Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Pharmacol ; 15: 1294122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948463

RESUMO

Introduction: Premenstrual dysphoric disorder (PMDD), a severe form of premenstrual syndrome (PMS), is a serious health disorder that affects patient moods. It is caused by cyclic psychological symptoms and its pathogenesis is still unclear. Abnormalities in the basolateral amygdala (BLA) orexin system, which are important causes of the development of depressive mood, have not been reported in PMDD, so exploring its intrinsic mechanisms is meaningful for enriching the pathomechanisms of PMDD. Methods: High performance liquid chromatography was used for the determination of the active ingredients of Jingqianshu granules. Developing a rat model of premenstrual depression using the forced swimming test (FST). The experiment consisted of two parts. In Part 1, the rats were divided into the control group, the model group, the model + Jingqianshu group, and the model + fluoxetine group. The FST, open field test, and elevated plus maze test, were used to assess the behavior of the rats as well as to evaluate the effect of drug intervention. Immunofluorescence and RT-qPCR were used to detect the expression of orexin and its receptors OX1R and OX2R genes and proteins. The expression of Toll-like receptor 4, nuclear factor kappa-B, tumor necrosis factor-α, interleukin 6, and interleukin-1ß in the BLA brain region was detected by Western-Blot. In part 2, the rats were injected intracerebrally with orexin-A. Observe the behavioral activities of rats in the control group, model group, and model+orexin-A group. Immunofluorescence was used to detect microglia in the BLA area of rats, and the expression levels of the above inflammatory factors were detected by Western-Blot. Results: The five components of Jingqianshu granules are: paeoniflorin, erulic acid, liquiritin, hesperidin, and paeonol. During the estrous cycle, rats exhibited depressive-like behavior during the non-receptive phase of the behavioral test, which disappeared during the receptive phase. Immunofluorescence and RT-qPCR showed reduced gene and protein expression of orexin, OX1R, and OX2R in the BLA region of rats in the model group.WB showed elevated levels of inflammatory factors. All returned to control levels after drug treatment. In part 2, injection of orexin-A into the BLA brain region of model rats resulted in reduced immunoreactivity of microglia and decreased expression levels of inflammatory factors. Discussion: Jianqianshu granules can achieve the purpose of treating premenstrual depression by regulating orexin-mediated inflammatory factors, which provides a new idea for further research on the pathogenesis of PMDD. However, the current study is still preliminary and the pathogenesis of PMDD is complex. Therefore, more in-depth exploration is needed.

2.
Microbiol Spectr ; : e0398223, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869294

RESUMO

Earth's stratosphere is characterized by hypobaric conditions, low temperatures, and high intensities of ultraviolet (UV) and cosmic radiation as well as low water and nutrient availability. While it is not considered a permanent habitat for microorganisms, they can be transported to the stratosphere by storms, volcanic action, or human activity. The impact of those extreme conditions on microorganisms and their survival were tested by sending a sample gondola to the stratosphere. The sample gondola was built to allow exposure of Bacillus subtilis endospores at different angles to the sun. It moreover had holders for three environmental samples to test the effect of stratospheric conditions on complex microbial communities. The gondola attached to a stratospheric balloon was launched near Kiruna, Sweden, ascended to ~25 km, and drifted eastward for ~200 km. Samples were exposed to pressures as low as 2 kPa and temperatures as low as -50°C as well as high UV radiation. Survival rates of B. subtilis were determined by comparing the numbers of colony-forming units (CFUs) for the different exposure angles. Survival was negatively correlated with exposure angle, indicating the significant impact of UV radiation. The effect of stratospheric conditions on environmental samples was assessed by comparing most probable numbers, microbial community composition, and substrate-use profiles to controls that had stayed on the ground. Cultivation was possible from all samples with survival rates of at least 1%, and differences in community composition were observed. Survival of environmental microorganisms might have been supported by the sample matrix, which provided protection from radiation and desiccation. IMPORTANCE: Earth's stratosphere is a hostile environment that has challenged microbial survival. We set out to test the effect of stratosphere exposure on survival of single species (Bacillus subtilis) and complex microbial communities from soils and sediment. B. subtilis survival was strongly impacted by sun exposure, i.e., ultraviolet (UV) radiation, with only 1% survival at full sun exposure. Complex microbial communities had high survival rates, and the soil or sediment matrix may have provided protection against radiation and desiccation, supporting the survival of environmental microorganisms.

3.
Angew Chem Int Ed Engl ; 63(29): e202402625, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709979

RESUMO

The interfacial instability of high-nickel layered oxides severely plagues practical application of high-energy quasi-solid-state lithium metal batteries (LMBs). Herein, a uniform and highly oxidation-resistant polymer layer within inner Helmholtz plane is engineered by in situ polymerizing 1-vinyl-3-ethylimidazolium (VEIM) cations preferentially adsorbed on LiNi0.83Co0.11Mn0.06O2 (NCM83) surface, inducing the formation of anion-derived cathode electrolyte interphase with fast interfacial kinetics. Meanwhile, the copolymerization of [VEIM][BF4] and vinyl ethylene carbonate (VEC) endows P(VEC-IL) copolymer with the positively-charged imidazolium moieties, providing positive electric fields to facilitate Li+ transport and desolvation process. Consequently, the Li||NCM83 cells with a cut-off voltage up to 4.5 V exhibit excellent reversible capacity of 130 mAh g-1 after 1000 cycles at 25 °C and considerable discharge capacity of 134 mAh g-1 without capacity decay after 100 cycles at -20 °C. This work provides deep understanding on tailoring electric double layer by cation specific adsorption for high-voltage quasi-solid-state LMBs.

4.
Angew Chem Int Ed Engl ; 63(29): e202405357, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38682802

RESUMO

The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)6]3-/4--based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)6]3- ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K-1. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m-2 K-2, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.

6.
Nanomicro Lett ; 16(1): 151, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466453

RESUMO

Despite notable progress in thermoelectric (TE) materials and devices, developing TE aerogels with high-temperature resistance, superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge. Herein, a highly elastic, flame-retardant and high-temperature-resistant TE aerogel, made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube (PEDOT:PSS/SWCNT) composites, has been fabricated, displaying attractive compression-induced power factor enhancement. The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring. Subsequently, a flexible TE generator is assembled, consisting of 25 aerogels connected in series, capable of delivering a maximum output power of 400 µW when subjected to a temperature difference of 300 K. This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines. Moreover, the designed self-powered wearable sensing glove can realize precise wide-range temperature detection, high-temperature warning and accurate recognition of human hand gestures. The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability. Benefitting from these desirable properties, the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring, industrial overheat warning, waste heat energy recycling and even wearable healthcare.

7.
Mater Horiz ; 11(7): 1679-1688, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305351

RESUMO

Due to the prevalence of electronic devices, intelligent sensors have attracted much interest for the detecting and providing alarms with respect to indoor electrical safety. Nonetheless, how to effectively identify various indoor electrical safety hazards remains a challenge. In this study, we fabricated single-walled carbon nanotube/poly(3-hexylthiophene-2,5-diyl) (SWCNT/P3HT) composites with exceptional bifunctional thermoelectric and photoelectric responses. Through synergy of the thermo-/photoelectric effects, the composites yielded greatly enhanced output voltages compared with the use of thermoelectric effects alone. Interestingly, modes of heat transfer can be effectively distinguished using the nominal Seebeck coefficients. Based on the remarkable output voltages and deviations in the nominal Seebeck coefficients, we developed indoor intelligent sensors capable of effectively identifying and monitoring diverse indoor electrical conditions, including electrical overheating, fire, and air conditioning flow. This pioneering investigation proposes a novel avenue for designing intelligent sensors that can recognize heat transfer modes and hence effectively monitor indoor electrical safety hazards.

8.
Chem Commun (Camb) ; 59(94): 13982-13985, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37937427

RESUMO

Lithium oxalate (Li2C2O4) is an attractive cathode pre-lithiation additive for lithium-ion batteries (LIBs), but its application is hindered by its high decomposition potential (>4.7 V). Due to the liquid-solid synergistic effect of the NaNO2 additive and the LiNi0.83Co0.07Mn0.1O2 (NCM) cathode material, the decomposition efficiency of micro-Li2C2O4 reaches 100% at a low charge cutoff voltage of 4.3 V. Our work boosts the widespread practical application of Li2C2O4 by a simple and promising electrolyte-assisted cathode pre-lithiation strategy.

9.
Phys Chem Chem Phys ; 25(40): 27885-27890, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37815353

RESUMO

The potential application of zinc air batteries to tackle the energy shortage and environmental crisis has proposed new requirements of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Utilizing the special spatial structure of zeolitic imidazolate framework-67 (ZIF-67) as an ideal research platform, the effect of a trace amount of Fe on the composition and structure of as-obtained Fe-CoNC catalysts was investigated. It was revealed that, due to the increased exposed pore structure and metal species located at the near surface, the active sites for the ORR/OER on Fe-CoNC are highly exposed, greatly boosting the activity to the reduction and evolution of oxygen in alkaline media. ZABs with Fe-CoNC have the highest maximum power density of 200 mW cm-2 when operated at current densities as high as 328 mA cm-2, better than not only Fe-free CoNC, but also precious metal-based references with the same catalyst loading.

10.
Sci Bull (Beijing) ; 68(24): 3261-3277, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37722927

RESUMO

Historically, fire disasters have killed numerous human lives, and caused tremendous property loss. Fire warning systems play a vital role in predicting fire risks, and are strongly desired to effectively prevent the disaster occurrence and significantly reduce the loss. Among the developed fire warning systems, thermoelectrics (TEs) and thermocells (TECs)-based fire warning materials are extremely important and indispensable in future research, owing to their unique capability of direct conversion between heat and electricity. Here, we present this review of the recent progress of TEs and TECs in fire warning field. Firstly, a brief introduction of existing fire warning systems is provided, including the mechanisms and features of various types. Then, the mechanisms of electronic TE (eTE), ionic TE (iTE) and TEC are elucidated. Next, the basic principles for the material preparation and device fabrication are discussed in their dimension sequence. Subsequently, some important advances or examples of TE fire warnings are highlighted in details. Finally, the challenges and prospects are outlooked.

11.
Nanomicro Lett ; 15(1): 196, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566154

RESUMO

The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human-machine interfaces.

12.
Nat Commun ; 14(1): 4766, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553335

RESUMO

The two-electron oxygen reduction reaction in acid is highly attractive to produce H2O2, a commodity chemical vital in various industry and household scenarios, which is still hindered by the sluggish reaction kinetics. Herein, both density function theory calculation and in-situ characterization demonstrate that in dual-atom CoIn catalyst, O-affinitive In atom triggers the favorable and stable adsorption of hydroxyl, which effectively optimizes the adsorption of OOH on neighboring Co. As a result, the oxygen reduction on Co atoms shifts to two-electron pathway for efficient H2O2 production in acid. The H2O2 partial current density reaches 1.92 mA cm-2 at 0.65 V in the rotating ring-disk electrode test, while the H2O2 production rate is as high as 9.68 mol g-1 h-1 in the three-phase flow cell. Additionally, the CoIn-N-C presents excellent stability during the long-term operation, verifying the practicability of the CoIn-N-C catalyst. This work provides inspiring insights into the rational design of active catalysts for H2O2 production and other catalytic systems.

13.
Patterns (N Y) ; 4(6): 100732, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409054

RESUMO

Accurate early detection of internal short circuits (ISCs) is indispensable for safe and reliable application of lithium-ion batteries (LiBs). However, the major challenge is finding a reliable standard to judge whether the battery suffers from ISCs. In this work, a deep learning approach with multi-head attention and a multi-scale hierarchical learning mechanism based on encoder-decoder architecture is developed to accurately forecast voltage and power series. By using the predicted voltage without ISCs as the standard and detecting the consistency of the collected and predicted voltage series, we develop a method to detect ISCs quickly and accurately. In this way, we achieve an average percentage accuracy of 86% on the dataset, including different batteries and the equivalent ISC resistance from 1,000 Ω to 10 Ω, indicating successful application of the ISC detection method.

14.
J Psychiatr Ment Health Nurs ; 30(6): 1216-1230, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401449

RESUMO

INTRODUCTION: Family-focused practice has become an emerging paradigm in mental health services. However, little is known about family-focused practice and associated factors in Chinese mental health workers. AIM: To examine family-focused practice and associated factors in Chinese mental health workers. METHOD: A cross-sectional survey was conducted in a convenience sample of mental health workers (n = 515) in Beijing, China. The Family-Focused Mental Health Practice Questionnaire was used to measure family-focused practice, as well as worker, workplace and client factors that might influence family-focused practice. Multiple linear regression analysis was performed to investigate the factors associated with family-focused practice. RESULTS: On average, the participants exhibited a moderate level of engagement in family-focused practice. The factors that most significantly influenced family-focused practice in Chinese mental health workers were skill and knowledge, worker confidence and time and workload. Moreover, psychiatrists were found to engage more in family-focused practice than psychiatric nurses, and community mental health workers were more active in family-focused practice than hospital-based ones. DISCUSSION: This study provided important data concerning family-focused practice and associated factors in Chinese mental health workers. IMPLICATIONS FOR PRACTICE: The varying level of Chinese mental health workers to engage in family-focused practice has advocacy, training, research and organizational implications for mental health services in China and elsewhere.


Assuntos
Transtornos Mentais , Serviços de Saúde Mental , Humanos , Saúde Mental , Estudos Transversais , Transtornos Mentais/psicologia , População do Leste Asiático
15.
Nat Commun ; 14(1): 3726, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349304

RESUMO

The development of alternative clean energy carriers is a key challenge for our society. Carbon-based hydrogen storage materials are well-suited to undergo reversible (de)hydrogenation reactions and the development of catalysts for the individual process steps is crucial. In the current state, noble metal-based catalysts still dominate this field. Here, a system for partially reversible and carbon-neutral hydrogen storage and release is reported. It is based on the dual-functional roles of formamides and uses a small molecule Fe-pincer complex as the catalyst, showing good stability and reusability with high productivity. Starting from formamides, quantitative production of CO-free hydrogen is achieved at high selectivity ( > 99.9%). This system works at modest temperatures of 90 °C, which can be easily supplied by the waste heat from e.g., proton-exchange membrane fuel cells. Employing such system, we achieve >70% H2 evolution efficiency and >99% H2 selectivity in 10 charge-discharge cycles, avoiding undesired carbon emission between cycles.


Assuntos
Formamidas , Hidrogênio , Prótons , Hidrogenação , Catálise
16.
Genes (Basel) ; 14(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239422

RESUMO

Intestinal microflora is correlated with obesity, metabolic diseases and digestive tract dysfunctions that are closely related to human health. Nobiletin (NOB) is a dietary polymethoxylated flavonoid with protective effects and activities against oxidative stress, inflammation and cardiovascular disorders. However, the effect and molecular mechanism of NOB in regulating white fat deposition have not been explored. In this study, we reported that NOB administration attenuates weight gain and glucose tolerance in mice fed a high-fat diet (HFD). Additionally, NOB administration substantially restored lipid metabolic disorder and repressed the level of genes related to lipid metabolism in HFD-induced obese mice. The sequencing of 16S rRNA genes in fecal samples unveiled that NOB administration reversed HFD-induced intestinal microbiota composition, particularly in the relative abundances of Bacteroidetes and Firmicutes at the phylum and genus level. Furthermore, NOB supplementation significantly improved the indexes of Chao1 and Simpson and implied NOB can improve intestinal flora diversity in HFD-fed mice. Next, we used LEfSe analysis to explore biomarkers presented as a taxon in different groups. Compared to the HFD group, NOB treatment significantly diminished the proportion of Ruminococcaceae, Ruminiclostridium, Intesinimonas, Oscillibacter and Desulfovibrio. Enriched metabolic pathways were predicted by Tax4Fun analysis and demonstrated that the lipid metabolic pathway is higher in the HFD + NOB group. More importantly, the correlation analysis demonstrated that Parabacteroides was significantly positive and Lactobacillus was negatively related to both body weight and inguinal adipose tissue weight. Collectively, our data emphasized that NOB has the potential to attenuate obesity and confirmed a mechanism for gut microbiota that mediated the beneficial effect of NOB.


Assuntos
Bacteroidetes , Obesidade , Humanos , Animais , Camundongos , Camundongos Obesos , RNA Ribossômico 16S/genética , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Bacteroidetes/genética , Lipídeos
17.
J Vis Exp ; (193)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37067274

RESUMO

The brain secretome consists of proteins either actively secreted or shed from the cell surface by proteolytic cleavage in the extracellular matrix of the nervous system. These proteins include growth factor receptors and transmembrane proteins, among others, covering a broad spectrum of roles in the development and normal functioning of the central nervous system. The current procedure to extract the secretome from cerebrospinal fluid is complicated and time-consuming, and it is difficult to isolate these proteins from experimental animal brains. In this study, we present a novel protocol for isolating the brain secretome from mouse brain slice cultures. First, the brains were isolated, sliced, and cultured ex vivo. The culture medium was then filtered and concentrated for isolating proteins by centrifugation after a few days. Finally, the isolated proteins were resolved using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequently probed for purity characterization by western blot. This isolation procedure of the brain secretome from ex vivo brain slice cultures can be used to investigate the effects of the secretome on a variety of neurodevelopmental diseases, such as autism spectrum disorders.


Assuntos
Proteínas , Secretoma , Animais , Camundongos , Proteínas/metabolismo , Eletroforese em Gel de Poliacrilamida , Western Blotting , Encéfalo/metabolismo
18.
Small ; 19(22): e2300758, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36866497

RESUMO

Fe single atoms and N co-doped carbon nanomaterials (Fe-N-C) are the most promising oxygen reduction reaction (ORR) catalysts to replace platinum group metals. However, high-activity Fe single-atom catalysts suffer from poor stability owing to the low graphitization degree. Here, an effective phase-transition strategy is reported to enhance the stability of Fe-N-C catalysts by inducing increased degree of graphitization and incorporation of Fe nanoparticles encapsulated by graphitic carbon layer without sacrificing activity. Remarkably, the resulted Fe@Fe-N-C catalysts achieved excellent ORR activity (E1/2  = 0.829 V) and stability (19 mV loss after 30K cycles) in acid media. Density functional theory (DFT) calculations agree with experimental phenomena that additional Fe nanoparticles not only favor to the activation of O2 by tailoring d-band center position but also inhibit the demetallization of Fe active center from FeN4 sites. This work provides a new insight into the rational design of highly efficient and durable Fe-N-C catalysts for ORR.

19.
Small ; 19(22): e2207461, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36861365

RESUMO

The local coordination environment of catalytical moieties directly determines the performance of electrochemical energy storage and conversion devices, such as Li-O2 batteries (LOBs) cathode. However, understanding how the coordinative structure affects the performance, especially for non-metal system, is still insufficient. Herein, a strategy that introduces S-anion to tailor the electronic structure of nitrogen-carbon catalyst (SNC) is proposed to improve the LOBs performance. This study unveils that the introduced S-anion effectively manipulates the p-band center of pyridinic-N moiety, substantially reducing the battery overpotential by accelerating the generation and decomposition of intermediate products Li1-3 O4 . The lower adsorption energy of discharging product Li2 O2 on NS pair accounts for the long-term cyclic stability by exposing the high active area under operation condition. This work demonstrates an encouraging strategy to enhance LOBs performance by modulating the p-band center on non-metal active sites.

20.
Nat Commun ; 14(1): 1118, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869038

RESUMO

Pannexin 2 (Panx2) is a large-pore ATP-permeable channel with critical roles in various physiological processes, such as the inflammatory response, energy production and apoptosis. Its dysfunction is related to numerous pathological conditions including ischemic brain injury, glioma and glioblastoma multiforme. However, the working mechanism of Panx2 remains unclear. Here, we present the cryo-electron microscopy structure of human Panx2 at a resolution of 3.4 Å. Panx2 structure assembles as a heptamer, forming an exceptionally wide channel pore across the transmembrane and intracellular domains, which is compatible with ATP permeation. Comparing Panx2 with Panx1 structures in different states reveals that the Panx2 structure corresponds to an open channel state. A ring of seven arginine residues located at the extracellular entrance forms the narrowest site of the channel, which serves as the critical molecular filter controlling the permeation of substrate molecules. This is further verified by molecular dynamics simulations and ATP release assays. Our studies reveal the architecture of the Panx2 channel and provide insights into the molecular mechanism of its channel gating.


Assuntos
Apoptose , Arginina , Conexinas , Humanos , Trifosfato de Adenosina , Microscopia Crioeletrônica , Proteínas do Tecido Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA