Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(30): 36233-36241, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486316

RESUMO

The stability and toxicity problems have haunted the development and applications of metal halide perovskite materials, for which the lead-free inorganic double perovskite Cs2AgBiBr6 has emerged as a promising substitute in recent years. However, poor film quality has severely limited its photovoltaic performance that could have been induced by some key factors such as high annealing temperature. Herein, we present a facile strategy to fabricate high-quality pinhole-free Cs2AgBiBr6 films with large grain sizes by introducing carbohydrazide (CBH) into the precursor. Detailed characterizations have shown that the carbonyl group (C═O) in CBH plays the critical role in coordinating with Ag+ and Bi3+ cations during the film formation process. As another consequence, the as-fabricated devices have exhibited significantly higher reproducibility for fabrication. By optimizing the amount of CBH, the power conversion efficiency (PCE) relatively increased 37 to 1.57%, which remained 95.0% in an ambient environment for a 1000-h test. Hopefully, this work could facilitate the current technologies in the exploration of high-performance lead-free perovskites such as Cs2AgBiBr6 and better understanding of the mechanism in the additive engineering as well.

2.
J Colloid Interface Sci ; 630(Pt B): 795-803, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356447

RESUMO

SiO2 nanomaterials are widely used for antireflection and self-cleaning, but the preparation process is usually complex and time-consuming. Hence, we present a facile one-step synthesis of a hydrophobic two-dimensional SiO2 nanomesh by tuning the reaction temperature using dodecylamine as a catalyst. SiO2 nanomesh has the advantages of an adjustable refractive index, simple preparation process, and low cost, which affords both antireflection and self-cleaning functions for solar cells. Two types of perovskite solar cells were used to verify the stability and universality of the SiO2 nanomesh coatings. The antireflection effect of the SiO2 nanomesh is found to increase the current density of both perovskite solar cells fabricated at 500 °C and 150 °C, with the efficiency increased by 4.48% and 4.79%, respectively.

3.
Adv Sci (Weinh) ; 9(6): e2105184, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35014220

RESUMO

Windows are the least energy efficient part of the buildings, as building accounts for 40% of global energy consumption. Traditional smart windows can only regulate solar transmission, while all the solar energy on the window is wasted. Here, for the first time, the authors demonstrate an energy saving and energy generation integrated smart window (ESEG smart window) in a simple way by combining louver structure solar cell, thermotropic hydrogel, and indium tin oxides (ITO) glass. The ESEG smart window can achieve excellent optical properties with ≈90% luminous transmission and ≈54% solar modulation, which endows excellent energy saving performance. The outstanding photoelectric conversion efficiency (18.24%) of silicon solar cells with louver structure gives the smart window excellent energy generation ability, which is more than 100% higher than previously reported energy generation smart window. In addition, the solar cell can provide electricity to for ITO glass to turn the transmittance of hydrogel actively, as well as the effect of antifreezing. This work offers an insight into the design and preparation together with a disruptive strategy of easy fabrication, good uniformity, and scalability, which opens a new avenue to realize energy storage, energy saving, active control, and antifreezing integration in one device.

4.
Nanomaterials (Basel) ; 11(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34578526

RESUMO

Many studies widely used SiO2@Ag composite nanospheres for surface enhanced Raman scattering (SERS), which mainly contributes to electromagnetic enhancement. In addition to experiments, previous simulations mostly adopted a two-dimensional model in SERS research, resulting in the three-dimensional information being folded and masked. In this paper, we adopted the three-dimensional model to simulate the electric field distribution of SiO2@Ag composite nanospheres. It is found that when the Ag nanoparticles are distributed densely on the surface of SiO2 nanospheres, light cannot pass through the upper hemisphere due to the local surface plasmon resonance (LSPR) of the Ag nanoparticles, resulting in the upper hemisphere shielding effect; and if there are no Ag nanoparticles distributed densely on the surface of SiO2 nanospheres, the strong LSPR cannot be formed, so the incident light will be guided downward through the whispering gallery mode of the spherical structure. At the same time, we designed relevant experiments to synthesize SiO2@Ag composite nanosphere as SERS substrate and used Rhodamine 6G as a probe molecule to study its SERS performance. This design achieved a significant SERS effect, and is very consistent with our simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA