Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39199145

RESUMO

Wheatgrass is recognized for its nutritional and medicinal properties, partly attributed to its flavonoid content. The objective of this study was to assess the flavonoid content and antioxidant properties of wheatgrass obtained from a wide range of 145 wheat cultivars, which included Chinese landraces (CL), modern Chinese cultivars (MCC), and introduced modern cultivars (IMC). The flavonoids were extracted using a solution of 80% methanol, and their content was evaluated using ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). The results revealed the assessed cultivars showed significant variation in their total flavonoid content (TFC), with MCCs generally having higher amounts compared to CLs. PCA analysis demonstrated clear variations in flavonoid profiles between different cultivar groups, emphasizing the evolutionary inconsistencies in wheat breeding. The antioxidant assays, ABTS, DPPH, and FRAP, exhibited robust abilities for eliminating radicals, which were found to be directly associated with the amounts of flavonoids. In addition, this study investigated the correlation between the content of flavonoids and the ability to resist powdery mildew in a collection of mutated wheat plants. Mutants exhibiting heightened flavonoid accumulation demonstrated a decreased severity of powdery mildew, suggesting that flavonoids play a protective role against fungal infections. The results highlight the potential of wheatgrass as a valuable source of flavonoids that have antioxidant and protective effects. This potential is influenced by the genetic diversity and breeding history of wheatgrass. Gaining insight into these connections can guide future wheat breeding endeavors aimed at improving nutritional value and in strengthening disease resistance. The current finding provides critical information for developing wheatgrass with high flavonoid content and antioxidant activity.

2.
Plant Cell Environ ; 45(12): 3604-3610, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36131562

RESUMO

Wheat is an essential energy and protein source for humans. Climate change brings daunting challenges to wheat yield through environmental stresses, in which phytohormones play critical roles. Nevertheless, the comprehensive understanding of wheat phytohormone responses remains elusive. Here, we investigated the transcriptome response of wheat seedlings to five phytohormones, cytokinin (6-BA), abscisic acid (ABA), gibberellic acid (GA), jasmonate (JA) and salicylic acid (SA). We further selected two JA marker genes and cloned their promoters to drive the expression of 3XEGFP (tandem trimeric enhanced green fluorescent protein) in transgenic lines. The JA fluorescent reporter displayed a fast and stable response to JA treatment as an ideal tool to follow JA dynamics during fungal and cold stresses at a cellular resolution. Overall, this study provided a transcriptional landscape and facilitated generating fluorescent reporters to monitor the dynamics of phytohormones in food crops.


Assuntos
Plântula , Triticum , Humanos , Triticum/metabolismo , Plântula/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Doenças das Plantas/microbiologia , Hormônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA