Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small Methods ; 8(3): e2301001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009524

RESUMO

Near-infrared persistent luminescence (NIR PersL) materials provide great potential in the fields of night vision, biological imaging, and information encryption. However, among various crystal structures, Cr3+ -doped gallium garnets show inferior PersL property, which turns out to be the bottleneck of their versatile applications. The rational design and facile preparation of high-performance NIR PersL materials are crucial for the emerging applications. In this work, a series of Gd3 Mgx Gex Ga5-2x O12 :Cr3+ (x = 0, 0.25, 0.5, 0.75, 1) is investigated by microwave-assisted solid-state (MASS) approach. Furthermore, by employing chemical composition co-substitution, PersL performance is further improved and the optimum working temperature is adjusted to the lower temperature at 10 °C. Trap level distribution of Gd3 Mg0.5 Ge0.5 Ga4 O12 :Cr3+ phosphor is revealed based on the temperature and fading-time dependent PersL and thermoluminescence property. Further study demonstrates the reduction of the bandgap and the trap distribution forwards at shallow-lying trap energy levels. The synergistic effect, from both energy-band manipulation and trap-level optimization, facilitates NIR PersL in Cr3+ -doped gadolinium gallium garnets. These findings confirm the applicability of MASS-based bandgap and defect level engineering for improving the PersL properties in non/inferior-PersL materials. This burgeoning MASS method may facilitate a wide range of PersL materials for various emerging applications.

2.
Mater Horiz ; 10(12): 5684-5693, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37791623

RESUMO

Despite the substantial progress made, the responsiveness of thermo-responsive materials upon various thermal fields is still restricted to monochromatic visualization with single-wavelength light emission. This stems from a poor understanding of the photophysical processes within the materials and the unvarying optical performance of luminescent centers' response to various ambient temperatures. Conventional techniques to assess the inhomogeneities of thermal fields can be time-consuming, require specialized equipment and suffer from inaccuracy due to the inevitable interference from background signals, especially at high temperature. To this end, we overcome these limitations for the first time, to flexibly visualize temperature inhomogeneities by developing a thermochromic smart material, SrGa12-xAlxO19:Dy3+. Two distinct modes of thermochromic properties (steady-state temperature-dependent luminescence and thermally stimulated luminescence) are investigated. It is revealed that the abundant colors (from yellow, green to red) and amazing color-changing features are due to the superior optical integration of the host (SrGa12-xAlxO19) and dopant (Dy3+) emissions under specific thermal stimulations. We suggest that this thermo-responsive smart material can be used to realize highly efficient and simple visualization of invisible thermal distribution in industry and beyond.

3.
Light Sci Appl ; 11(1): 80, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351847

RESUMO

The first carbon dot (CD)-based organic long persistent luminescence (OLPL) system exhibiting more than 1 h of duration was developed. In contrast to the established OLPL systems, herein, the reported CDs-based system (named m-CDs@CA) can be facilely and effectively fabricated using a household microwave oven, and more impressively, its LPL can be observed under ambient conditions and even in aqueous media. XRD and TEM characterizations, afterglow decay, time-resolved spectroscopy, and ESR analysis were performed, showing the successful composition of CDs and CA, the formation of exciplexes and long-lived charged-separated states. Further studies suggest that the production of covalent bonds between CA and CDs plays pivotal roles in activating LPL and preventing its quenching from oxygen and water. To the best of our knowledge, this is a very rare example of an OLPL system that exhibits hour-level afterglow under ambient conditions. Finally, applications of m-CDs@CA in glow-in-the-dark paints for emergency signs and multicolored luminous pearls were preliminarily demonstrated. This work may provide new insights for the development of rare-earth-free and robust OLPL materials.

4.
Nanomicro Lett ; 13(1): 198, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34529154

RESUMO

Near-infrared (NIR), particularly NIR-containing dual-/multi-mode afterglow, is very attractive in many fields of application, but it is still a great challenge to achieve such property of materials. Herein, we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots (CDs) through in situ embedding o-CDs (being prepared from o-phenylenediamine) into cyanuric acid (CA) matrix (named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) of o-CDs, respectively. In addition, the formation of covalent bonds between o-CDs and CA, and the presence of multiple fixation and rigid effects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA, it is completely covered by the green TADF during directly observing. The NIR RTP signal, however, can be readily captured if an optical filter (cut-off wavelength of 600 nm) being used. By utilizing these unique features, the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally, the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances.

5.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835744

RESUMO

Tetravalent manganese doped phosphors are emerging as a new class of efficient near-infrared emitters for applications in a variety of areas, such as bioimaging and night-vision surveillance. Novel double perovskite-type La2MgGeO6:Mn4+ phosphors were successfully prepared using a microwave-assisted energy-saving solid state method. This simple technique involving the use of a microwave susceptor allows for a reduction of the preparation time compared to a conventional solid state reaction. The samples were investigated using powder X-ray diffraction, scanning electron microscopy, as well as energy-dispersive X-ray spectroscopy mapping, photoluminescence excitation/emission spectroscopy, persistent luminescence decay and temperature-dependent photoluminescence analysis. Substitution between isovalent Mn4+ and Ge4+ can be achieved without additional charge compensators in this germanate-based phosphor, which provides strong emission in the near-infrared spectral region, assigned to the characteristic transitions of tetravalent manganese ions. Additionally, the double perovskite-type germanate phosphor exhibits excellent luminescence thermal stability. Moreover, the spectroscopic properties, excitation wavelength-dependent and temperature-dependent persistent luminescence were studied. A series of thermoluminescence measurements were presented trying to give clear information on the charging process, afterglow behavior and the nature of the traps responsible for the persistent luminescence. The present investigation expands the range of available promising near-infrared emitting persistent phosphors for medical imaging.

6.
Sci Rep ; 9(1): 10517, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324845

RESUMO

Development of persistent luminescent materials has drawn continuous attention in recent years in view of their potential applications in the fields of security night-vision signage, in vivo bio-imaging and optical data storage. Currently, the normative evaluation of a new persistent luminescent material is focused on the light emission spectrum, the afterglow decay curve and the total duration time of the persistent luminescence. In this paper, we investigate the temperature dependent persistent luminescence in some well-known persistent phosphors and relate this to their thermoluminescence properties. The concept of the optimum working temperature is proposed as a new means for evaluating persistent phosphors. It is shown that there is a clear relation between the efficient temperature range of the afterglow output and the thermoluminescence glow curve. The experimental work is supported by simulations of thermoluminescence and afterglow characteristics. The concept of the optimum working temperature for persistent phosphors can be used as an evaluative criterion for applications in various working environments.

7.
Phys Chem Chem Phys ; 20(48): 30455-30465, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30506069

RESUMO

Persistent phosphors are increasingly investigated due to their potential applications in various fields, such as safety signage, dosimetry and in vivo imaging. These materials act as optical batteries that store and gradually release energy supplied during optical charging. As the energy is stored, or 'trapped', at specific defect sites in the host lattice, a clear understanding of the defects and trapping mechanisms in these materials is important for systematic improvement of their properties. Here, the thermoluminescence and afterglow properties of the near-infrared (NIR) emitting persistent phosphor LiGa5O8:Cr3+ (LGO:Cr) are studied. This phosphor is used as a model system for illustrating a more general approach to reliably derive trap depth distributions in persistent luminescent and storage materials. The combination of the Tstop-Tmax method with initial rise analysis is used to experimentally determine the presence of a broad distribution of trapping states. Computerized glow curve fitting is subsequently used to extract the relevant trapping parameters of the system in a rigorous, consistent manner, by fitting all the experimentally recorded data simultaneously. The resulting, single set of model parameters is able to describe all measured thermoluminescence and afterglow data and hence can be used to predict afterglow and storage properties of the phosphor under various conditions. The methods to analyze and describe the trap structure of the persistent phosphor LGO:Cr are straightforwardly applicable for other persistent and storage phosphors and result in a reliable determination of the relevant trapping parameters of a given material.

8.
Adv Mater ; 30(43): e1801078, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30260510

RESUMO

Organic single-crystalline semiconductors with long-range periodic order have attracted much attention for potential applications in electronic and optoelectronic devices due to their high carrier mobility, highly thermal stability, and low impurity content. Molecular doping has been proposed as a valuable strategy for improving the performance of organic semiconductors and semiconductor-based devices. However, a fundamental understanding of the inherent doping mechanism is still a key challenge impeding its practical application. In this study, solid evidence for the "perfect" substitutional doping mechanism of the stacking mode between the guest and host molecules in organic single-crystalline semiconductors using polarized photoluminescence spectrum measurements and first-principles calculations is provided. The molecular host-guest doping is further exploited for efficient color-tunable and even white organic single-crystal-based light-emitting devices by controlling the doping concentration. The clarification of the molecular doping mechanism in organic single-crystalline semiconductor host-guest system paves the way for their practical application in high-performance electronic and optoelectronic devices.

9.
Materials (Basel) ; 10(12)2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231901

RESUMO

Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+) was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl-/Na⁺/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging.

10.
Sci Rep ; 6: 21912, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902736

RESUMO

Long-wave infrared (8-12 µm) transmitting materials play critical roles in space science and electronic science. However, the paradox between their mechanical strength and infrared transmitting performance seriously prohibits their applications in harsh external environment. From the experimental view, searching a good window material compatible with both properties is a vast trail-and-error engineering project, which is not readily achieved efficiently. In this work, we propose a very simple and efficient method to explore potential infrared window materials with suitable mechanical property by first-principles gene-like searching. Two hundred and fifty-three potential materials are evaluated to find their bulk modulus (for mechanical performance) and phonon vibrational frequency (for optical performance). Seven new potential candidates are selected, namely TiSe, TiS, MgS, CdF2, HgF2, CdO, and SrO. Especially, the performances of TiS and CdF2 can be comparable to that of the most popular commercial ZnS at high temperature. Finally, we propose possible ranges of infrared transmission for halogen, chalcogen and nitrogen compounds respectively to guide further exploration. The present strategy to explore IR window materials can significantly speed up the new development progress. The same idea can be used for other material rapid searching towards special functions and applications.


Assuntos
Compostos de Cádmio/química , Fluoretos/química , Fônons , Sulfetos/química , Titânio/química , Compostos de Zinco/química , Eletrônica/instrumentação , Temperatura Alta , Humanos , Raios Infravermelhos , Voo Espacial/instrumentação , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA