Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Heliyon ; 10(9): e30434, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38737248

RESUMO

Contrast-induced acute kidney injury (CI-AKI) is a growingly common kidney problem caused by medical procedures involving contrast media (CM), especially in older patients with existing health issues. It is crucial to pinpoint potential biomarkers for the early detection of CI-AKI. Previously, we observed that iodixanol affects glucose, choline, and glutathione metabolism in endothelial cells under laboratory conditions. In this study, we used 1H NMR-based metabolomics to examine the metabolic changes in the blood plasma of elderly patients with cardiovascular disease (CVD) before and after receiving iodixanol. We identified altered metabolites in plasma 24 and 48 h after iodixanol injection compared to levels before injection. Notably, metabolites such as glucose, unsaturated fatty acids (UFA), low-density lipoprotein (LDL)/very low-density lipoprotein (VLDL), pyruvate, choline, and glycine showed potential as biomarkers at 24 h post-injection compared to levels before injection. Similarly, glucose, pyruvate, lactate, choline, and glycine in plasma could serve as potential biomarkers at 48 h post-injection. Iodixanol notably affected pathways related to glycolysis, fatty acid breakdown, and amino acid metabolism according to our metabolic pathway analysis. The altered levels of specific metabolites in plasma could be indicative of CM-induced kidney injury. Overall, this research aids in understanding the physiological mechanisms involved and in identifying early biomarkers and prevention strategies for CI-AKI.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124230, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581773

RESUMO

Although a few of fluorescent probes based on carbon dots (CDs) for vitamin B (VB) determination have been emerged, none of them can realize the detection of different kinds of VB. In this paper, nitrogen, chlorine co-doped dual-emission CDs (N, Cl-CDs) with emissions at 404 nm and 595 nm have been easily synthesized. VB2, VB9 and VB12 can all induce obvious fluorescence turn-off response toward the N, Cl-CDs. Based on that, three types of VBs are quantitatively and sensitively evaluated in aqueous solution with wide concentration ranges of 14.9-135.0 µM, 34.7-89.8 µM and 29.8-79.8 µM, respectively. Importantly, visual semiquantitative detection of VBs on a test strip are also proposed. Moreover, the current N, Cl-CDs have been successfully applied to the detection of VBs in real samples. The N, Cl-CDs are sensitively multifunctional sensors for three kinds of VBs in aqueous solution and the visual semiquantitative detection by test paper assay is simple, portable and inexpensive.

3.
Pestic Biochem Physiol ; 201: 105897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685223

RESUMO

Solid nanodispersion (SND) is an important variety of nanopesticides which have been extensively studied in recent years. However, the key influencing factors for bioactivity enhancement of nanopesticides remain unclear, which not only limits the exploration of relevant mechanisms, but also hinders the precise design and development of nanopesticides. In this study, we explored the potential of SND in enhancing the bioactivity of nanopesticides, specifically focusing on abamectin SND prepared using a self-emulsifying-carrier solidifying technique combined with parameter optimization. Our formulation, consisting of 8% abamectin, 1% antioxidant BHT (2,6-di-tert-butyl-4-methylphenol), 12% complex surfactants, and 79% sodium benzoate, significantly increased the pseudo-solubility of abamectin by at least 3300 times and reduced its particle size to a mere 15 nm, much smaller than traditional emulsion in water (EW) and water-dispersible granule (WDG) forms. This reduction in particle size and increase in surface activity resulted in improved foliar adhesion and retention, enabling a more efficient application without the need for organic solvents. The inclusion of antioxidants also enhanced photostability compared to EW, and overall stability tests confirmed SND's resilience under various storage conditions. Bioactivity tests demonstrated a marked increase in toxicity against diamondback moths (Plutella xylostella L.) with abamectin SND, which exhibited 3.7 and 7.6 times greater efficacy compared to EW and WDG, respectively. These findings underscore the critical role of small particle size, high surface activity, and strong antioxidant properties in improving the performance and bioactivity of abamectin SND, highlighting its significance in the design and development of high-efficiency, eco-friendly nanopesticides and contributing valuably to sustainable agricultural practices.


Assuntos
Ivermectina , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Ivermectina/química , Animais , Inseticidas/farmacologia , Inseticidas/química , Tamanho da Partícula , Antioxidantes/farmacologia , Antioxidantes/química , Nanopartículas/química , Mariposas/efeitos dos fármacos , Tensoativos/farmacologia , Tensoativos/química , Larva/efeitos dos fármacos , Emulsões
4.
Cell Rep ; 43(4): 114006, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38554279

RESUMO

Reprogramming to pluripotency is associated with DNA damage and requires the functions of the BRCA1 tumor suppressor. Here, we leverage separation-of-function mutations in BRCA1/2 as well as the physical and/or genetic interactions between BRCA1 and its associated repair proteins to ascertain the relevance of homology-directed repair (HDR), stalled fork protection (SFP), and replication gap suppression (RGS) in somatic cell reprogramming. Surprisingly, loss of SFP and RGS is inconsequential for the transition to pluripotency. In contrast, cells deficient in HDR, but proficient in SFP and RGS, reprogram with reduced efficiency. Conversely, the restoration of HDR function through inactivation of 53bp1 rescues reprogramming in Brca1-deficient cells, and 53bp1 loss leads to elevated HDR and enhanced reprogramming in mouse and human cells. These results demonstrate that somatic cell reprogramming is especially dependent on repair of replication-associated double-strand breaks (DSBs) by the HDR activity of BRCA1 and BRCA2 and can be improved in the absence of 53BP1.


Assuntos
Proteína BRCA1 , Reprogramação Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Replicação do DNA , Reparo de DNA por Recombinação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
5.
J Cell Mol Med ; 28(7): e18154, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494840

RESUMO

Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.


Assuntos
Doenças do Sistema Digestório , Doença de Parkinson , Humanos , Dopamina/metabolismo , Receptores Dopaminérgicos , Doença de Parkinson/metabolismo , Neurotransmissores
7.
Crit Rev Immunol ; 44(4): 23-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505919

RESUMO

Enhancer of zeste homolog 2 (EZH2)gene has a prognostic role in hepatocellular carcinoma (HCC). This study aimed to identify the role of microRNAs (miRNAs) let-7c-5p by targeting EZH2 in HCC. We downloaded gene and miRNA RNA-seq data from The Cancer Genome Atlas (TCGA) database. Differences in EZH2 expression between different groups were analyzed and the association of EZH2 expression with HCC prognosis was detected using Cox regression analysis. The miRNA-EZH2-pathway network was constructed. Dual-luciferase reporter assay was performed to detect the hsa-let-7c-5p-EZH2. Cell proliferation, migration, invasion, and apoptosis were detected by CCK-8, Wound healing, Transwell, and Flow cytometry, respectively. RT-qPCR and Western blot were used to detect the expression of let-7c-5p and EZH2. EZH2 was upregulated in HCC tumors (P < 0.0001). Cox regression analysis showed that TCGA HCC patients with high EZH2 expression levels showed a short survival time [hazard ratio (HR) = 1.677, 95% confidence interval (CI) 1.316-2.137; P < 0.0001]. Seven miRNAs were negatively correlated with EZH2 expression and were significantly downregulated in HCC tumor samples (P < 0.0001), in which hsa-let-7c-5p was associated with prognosis in HCC (HR = 0.849 95% CI 0.739-0.975; P = 0.021). We identified 14 immune cells that showed significant differences in EZH2 high- and low-expression groups. Additionally, let-7c-5p inhibited HCC cell proliferation, migration, and invasion and reversed the promoted effects of EZH2 on HCC cell malignant characteristics. hsa-let-7c-5p-EZH2 significantly suppressed HCC malignant characteristics, which can be used for HCC prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
8.
FASEB J ; 38(5): e23526, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430456

RESUMO

Germ cell development depends on the capacity of somatic Sertoli cells to undergo differentiation into a mature state and establish a germ cell-specific blood-testis barrier (BTB). The BTB structure confers an immunological barrier for meiotic and postmeiotic germ cells, and its dynamic permeability facilitates a transient movement of preleptotene spermatocytes through BTB to enter meiosis. However, the regulatory factors involved in Sertoli cell maturation and how BTB dynamics coordinate germ cell development remain unclear. Here, we found a histone deacetylase HDAC3 abundantly expresses in Sertoli cells and localizes in both cytoplasm and nucleus. Sertoli cell-specific Hdac3 knockout in mice causes infertility with compromised integrity of blood-testis barrier, leading to germ cells unable to traverse through BTB and an accumulation of preleptotene spermatocytes in juvenile testis. Mechanistically, nuclear HDAC3 regulates the expression program of Sertoli cell maturation genes, and cytoplasmic HDAC3 forms a complex with the gap junction protein Connexin 43 to modulate the BTB integrity and dynamics through regulating the distribution of tight junction proteins. Our findings identify HDAC3 as a critical regulator in promoting Sertoli cell maturation and maintaining the homeostasis of the blood-testis barrier.


Assuntos
Barreira Hematotesticular , Histona Desacetilases , Células de Sertoli , Animais , Masculino , Camundongos , Barreira Hematotesticular/metabolismo , Diferenciação Celular , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Espermatogênese/genética , Testículo/metabolismo , Junções Íntimas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
9.
Huan Jing Ke Xue ; 45(3): 1512-1524, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471866

RESUMO

It is important to explore the relationship between land use types and water quality to improve the surface water environment. Based on monthly water quality monitoring data from 16 nationally controlled surface water quality monitoring stations in Tianjin and land use data in 2021, GIS spatial analysis and mathematical and statistical methods were used to study the influence of land use types on surface water quality in buffer zones at different scales. The results showed that:① the land use types in the study area were mainly construction land, farmland, and water areas, which had significant effects on river water quality. Except for water temperature (WT) and pH, the farmland, construction land, and water areas were negatively correlated with each water quality indicator; forest land and grassland were positively correlated with dissolved oxygen (DO) and total nitrogen (TN) and negatively correlated with other water quality indicators. ② The water quality indicators showed obvious spatial differences in different seasons. The pH, DO and TN concentrations were higher in the dry season, whereas the permanganate index, ammonia nitrogen (NH4+-N), and total phosphorus (TP) concentrations were higher in the rainy season. ③ The results of the RDA analysis showed that the 800 m buffer zone land use had the greatest explanatory power for water quality changes in the dry season (50.4%), whereas the 3 000 m buffer zone land use could explain the water quality changes in the rainy season to the greatest extent (49.6%); from the average explanation rate of the dry and rainy seasons, the 3 000 m buffer zone was the best impact scale (50.0%) on water quality indicators in Tianjin. ④ The partial least squares regression (PLSR) analysis showed that the most important variables affecting surface water quality changes were construction land, farmland, and water areas. The predictive ability of the PLSR model of most water quality indicators was stronger in the dry season than that in the rainy season. In the dry season, all water quality indicators, except WT and pH, were most influenced by farmland. In the rainy season, construction land had the greatest influence on WT and NH4+-N concentrations, and the most important influencing factor for the remaining water quality indicators was still farmland. This study showed that the rational planning of land use types within 3 000 m of rivers or lakes was beneficial to improving the water quality of surface water.

10.
Exp Ther Med ; 27(4): 136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476884

RESUMO

[This retracts the article DOI: 10.3892/etm.2020.8623.].

12.
PLoS Pathog ; 20(2): e1012014, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394330

RESUMO

The mechanism of genome DNA replication in circular single-stranded DNA viruses is currently a mystery, except for the fact that it undergoes rolling-circle replication. Herein, we identified SUMOylated porcine nucleophosmin-1 (pNPM1), which is previously reported to be an interacting protein of the viral capsid protein, as a key regulator that promotes the genome DNA replication of porcine single-stranded DNA circovirus. Upon porcine circovirus type 2 (PCV2) infection, SUMO2/3 were recruited and conjugated with the K263 site of pNPM1's C-terminal domain to SUMOylate pNPM1, subsequently, the SUMOylated pNPM1 were translocated in nucleoli to promote the replication of PCV2 genome DNA. The mutation of the K263 site reduced the SUMOylation levels of pNPM1 and the nucleolar localization of pNPM1, resulting in a decrease in the level of PCV2 DNA replication. Meanwhile, the mutation of the K263 site prevented the interaction of pNPM1 with PCV2 DNA, but not the interaction of pNPM1 with PCV2 Cap. Mechanistically, PCV2 infection increased the expression levels of Ubc9, the only E2 enzyme involved in SUMOylation, through the Cap-mediated activation of ERK signaling. The upregulation of Ubc9 promoted the interaction between pNPM1 and TRIM24, a potential E3 ligase for SUMOylation, thereby facilitating the SUMOylation of pNPM1. The inhibition of ERK activation could significantly reduce the SUMOylation levels and the nucleolar localization of pNPM1, as well as the PCV2 DNA replication levels. These results provide new insights into the mechanism of circular single-stranded DNA virus replication and highlight NPM1 as a potential target for inhibiting PCV2 replication.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Circovirus/genética , Circovirus/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Nucleofosmina , Sumoilação , Infecções por Circoviridae/genética , Infecções por Circoviridae/metabolismo , Replicação Viral/fisiologia , DNA Viral/genética , DNA Viral/metabolismo
13.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405904

RESUMO

The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.

14.
BMC Infect Dis ; 24(1): 240, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389047

RESUMO

OBJECTIVE: This study aimed to investigate the clinical characteristics of severe fever with thrombocytopenia syndrome complicated by viral myocarditis (SFTS-VM) and analyze relevant influencing factors. METHODS: Retrospective analysis was conducted on clinical data from 79 SFTS-VM patients, categorized into common (SFTS-CVM, n = 40) and severe groups (SFTS-SVM, n = 39). Clinical manifestations, laboratory results, cardiac ultrasonography, and electrocardiogram features were analyzed. Univariate and multivariate analyses identified significant indicators, which were further assessed using ROC curves to predict SFTS-SVM. RESULTS: SFTS-SVM group exhibited higher rates of hypotension, shock, abdominal pain, cough with sputum, and consciousness disorders compared to SFTS-CVM group. Laboratory findings showed elevated platelet count, ALT, AST, amylase, lipase, LDH, D-dimer, procalcitonin, TNI, and NT-proBNP in SFTS-SVM. Abnormal electrocardiograms, especially atrial fibrillation, were more prevalent in SFTS-SVM (P < 0.05). Multivariate analysis identified elevated LDH upon admission (OR = 1.004, 95% CI: 1-1.008, P = 0.050), elevated NT-proBNP (OR = 1.005, 95% CI: 1.001-1.008, P = 0.007), and consciousness disorders (OR = 112.852, 95% CI: 3.676 ~ 3464.292, P = 0.007) as independent risk factors for SFTS-SVM. LDH and NT-proBNP had AUCs of 0.728 and 0.744, respectively, in predicting SFTS-SVM. Critical values of LDH (> 978.5U/L) and NT-proBNP (> 857.5pg/ml)) indicated increased likelihood of SFTS progression into SVM. CONCLUSION: Elevated LDH, NT-proBNP, and consciousness disorders independently correlate with SFTS-SVM. LDH and NT-proBNP can aid in early identification of SFTS-SVM development when above specified thresholds.


Assuntos
Miocardite , Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Trombocitopenia , Viroses , Humanos , Estudos Retrospectivos , Trombocitopenia/complicações , Trombocitopenia/diagnóstico , Miocardite/complicações , Miocardite/diagnóstico , Transtornos da Consciência/complicações , Febre/complicações
15.
Int J Antimicrob Agents ; 63(5): 107120, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417705

RESUMO

OBJECTIVES: This study aimed to appraise clinical practice guidelines (CPGs) for the treatment of carbapenem-resistant Gram-negative Bacilli (CRGNB) infections and to summarise the recommendations. METHODS: A systematic search of the literature published from January 2012 to March 2023 was undertaken to identify CPGs related to CRGNB infections treatment. The methodological and reporting quality of eligible CPGs were assessed using six domains of the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool and seven domains of the Reporting Items for practice Guidelines in HealThcare (RIGHT) checklist. Basic information and recommendations of included CPGs were extracted and compared. RESULTS: A total of 21 CPGs from 7953 relevant articles were included. The mean overall AGREE II score was 62.7%, and was highest for "clarity of presentation" (90.2%) and lowest for "stakeholder involvement" (44.8%). The overall reporting quality of all of the CPGs was suboptimal, with the proportion of eligible items ranging from 45.7 to 85.7%. The treatment of CRGNB infections is related to the type of pathogen, the sensitivity of antimicrobial agents, and the site of infection. In general, the recommended options mainly included novel ß-lactam/ ß-lactamase inhibitors, cefiderocol, ampicillin-sulbactam (mainly for carbapenem-resistant Acinetobacter baumannii [CRAB]), and combination therapy, involving polymyxin B/colistin, tigecycline (except for carbapenem-resistant Pseudomonas aeruginosa), aminoglycosides, carbapenems, fosfomycin, and sulbactam (mainly for CRAB). CONCLUSIONS: The methodological and reporting quality of CPGs for the treatment of CRGNB infections are generally suboptimal and need further improvement. Both monotherapy with novel drugs and combination therapy play important roles in the treatment.


Assuntos
Antibacterianos , Carbapenêmicos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Guias de Prática Clínica como Assunto , Humanos , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Tigeciclina/uso terapêutico , Tigeciclina/farmacologia , Sulbactam/uso terapêutico , Sulbactam/farmacologia , Testes de Sensibilidade Microbiana/normas , Cefiderocol , Fosfomicina/uso terapêutico , Fosfomicina/farmacologia
16.
J Food Sci ; 89(3): 1773-1790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349030

RESUMO

Sucrose emerges as a chelating agent to form a stable sucrose-metal-ion chelate that can potentially improve metal-ion absorption. This study aimed to analyze the structure of sucrose-calcium chelate and its potential to promote calcium absorption in both Caco-2 monolayer cells and mice. The characterization results showed that calcium ions mainly chelated with hydroxyl groups in sucrose to produce sucrose-calcium chelate, altering the crystal structure of sucrose (forming polymer particles) and improving its thermal stability. Sucrose-calcium chelate dose dependently increased the amount of calcium uptake, retention, and transport in the Caco-2 monolayer cell model. Compared to CaCl2 , there was a significant improvement in the proportion of absorbed calcium utilized for transport but not retention (93.13 ± 1.75% vs. 67.67 ± 7.55%). Further treatment of calcium channel inhibitors demonstrated the active transport of sucrose-calcium chelate through Cav1.3. Cellular thermal shift assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays indicated that the ability of sucrose-calcium chelate to promote calcium transport was attributed to its superior ability to bind with PMCA1b, a calcium transporter located on the basement membrane, and stimulate its gene expression compared to CaCl2 . Pharmacokinetic analysis of mice confirmed the calcium absorption-promoting effect of sucrose-calcium chelate, as evident by the higher serum calcium level (44.12 ± 1.90 mg/L vs. 37.42 ± 1.88 mmol/L) and intestinal PMCA1b gene expression than CaCl2 . These findings offer a new understanding of how sucrose-calcium chelate enhances intestinal calcium absorption and could be used as an ingredient in functional foods to treat calcium deficiency. PRACTICAL APPLICATION: The development of high-quality calcium supplements is crucial for addressing the various adverse symptoms associated with calcium deficiency. This study aimed to prepare a sucrose-calcium chelate and analyze its structure, as well as its potential to enhance calcium absorption in Caco-2 monolayer cells and mice. The results demonstrated that the sucrose-calcium chelate effectively promoted calcium absorption. Notably, its ability to enhance calcium transport was linked to its strong binding with PMCA1b, a calcium transporter located on the basement membrane, and its capacity to stimulate PMCA1b gene expression. These findings contribute to a deeper understanding of how the sucrose-calcium chelate enhances intestinal calcium absorption and suggest its potential use as an ingredient in functional foods for treating calcium deficiency.


Assuntos
Cálcio da Dieta , Cálcio , Humanos , Camundongos , Animais , Cálcio/metabolismo , Células CACO-2 , Cloreto de Cálcio , Fenômenos Químicos
17.
World J Gastroenterol ; 30(2): 196-198, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38312117

RESUMO

This letter is intended to arouse your interest in a recent review of comprehensive scientometrics and clinical trials on immunotherapy for gastric cancer (GC). Our study reviews recent advances in immunotherapy in the field of GC and highlights its new prospects as a treatment for GC. Our research reveals China's leadership in this field, as well as new therapeutic strategies such as immune checkpoint inhibitors, cellular immunotherapy, and vaccines. The combined findings highlight the potential of immunotherapy to improve survival and quality of life in patients with stomach cancer. We believe that this study will provide important guidance for the future direction of the GC treatment field.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Qualidade de Vida , Imunoterapia/efeitos adversos
18.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372369

RESUMO

Human pluripotent stem cells (hPSCs) can differentiate into any kind of cell, making them an excellent alternative source of human pancreatic ß-cells. hPSCs can either be embryonic stem cells (hESCs) derived from the blastocyst or induced pluripotent cells (hiPSCs) generated directly from somatic cells using a reprogramming process. Here a video-based protocol is presented to outline the optimal culture and passage conditions for hPSCs, prior to their differentiation and subsequent generation of insulin-producing pancreatic cells. This methodology follows the six-stage process for ß-cell directed differentiation, wherein hPSCs differentiate into definitive endoderm (DE), primitive gut tube, posterior foregut fate, pancreatic progenitors, pancreatic endocrine progenitors, and ultimately pancreatic ß-cells. It is noteworthy that this differentiation methodology takes a period of 27 days to generate human pancreatic ß-cells. The potential of insulin secretion was evaluated through two experiments, which included immunostaining and glucose-stimulated insulin secretion.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Pâncreas
19.
Nat Struct Mol Biol ; 31(3): 498-512, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38182927

RESUMO

Three-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor. Decitabine-induced genome-wide DNA hypomethylation results in large-scale 3D epigenome deregulation, including de-compaction of higher-order chromatin structure and loss of boundary insulation of topologically associated domains. Significant DNA hypomethylation associates with ectopic activation of ER-enhancers, gain in ER binding, creation of new 3D enhancer-promoter interactions and concordant up-regulation of ER-mediated transcription pathways. Importantly, long-term withdrawal of epigenetic therapy partially restores methylation at ER-enhancer elements, resulting in a loss of ectopic 3D enhancer-promoter interactions and associated gene repression. Our study illustrates the potential of epigenetic therapy to target ER+ endocrine-resistant breast cancer by DNA methylation-dependent rewiring of 3D chromatin interactions, which are associated with the suppression of tumor growth.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Decitabina/farmacologia , Decitabina/uso terapêutico , Decitabina/metabolismo , Epigenoma , Metilação de DNA/genética , Cromatina , Epigênese Genética , DNA/metabolismo , Regulação Neoplásica da Expressão Gênica
20.
Cancer Biol Ther ; 25(1): 2302924, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226836

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most malignant tumor. Zinc finger and SCAN domain-containing protein 23 (ZSCAN23) is a new member of the SCAN domain family. The expression regulation and biological function remain to be elucidated. In this study, we explored the epigenetic regulation and the function of ZSCAN23 in PDAC. ZSCAN23 was methylated in 60.21% (171/284) of PDAC and its expression was regulated by promoter region methylation. The expression of ZSCAN23 inhibited cell proliferation, colony formation, migration, invasion, and induced apoptosis and G1/S phase arrest. ZSCAN23 suppressed Panc10.05 cell xenograft growth in mice. Mechanistically, ZSCAN23 inhibited Wnt signaling by interacting with myosin heavy chain 9 (MYH9) in pancreatic cancer cells. ZSCAN23 is frequently methylated in PDAC and may serve as a detective marker. ZSCAN23 suppresses PDAC cell growth both in vitro and in vivo.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Via de Sinalização Wnt/genética , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA