Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Exp Biol Med (Maywood) ; 248(23): 2408-2420, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38158612

RESUMO

Renal ischemia-reperfusion injury (IRI) is a common clinical complication of multiple severe diseases. Owing to its high mortality and the lack of effective treatment, renal IRI is still an intractable problem for clinicians. Itaconate, which is a metabolite of cis-aconitate, can exert anti-inflammatory and antioxidant roles in many diseases. As a derivative of itaconate with high cell membrane permeability, 4-octyl itaconate (4-OI) could provide a protective effect for various diseases. However, the role of 4-OI in renal IRI is still unclear. Herein, we examined whether 4-OI afforded kidney protection through attenuating endoplasmic reticulum stress (ERS) via nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. To observe the effects of 4-OI on alleviating renal pathologic injury, improving renal dysfunction, decreasing inflammatory cytokines, and reducing oxidative stress, we utilized C57BL/6J mice with bilateral renal pedicle clamped and HK-2 cells with hypoxia/reoxygenation (H/R) exposure in our study. In addition, through western blot assay, we found 4-OI ameliorated renal IRI-induced ERS, and activated Nrf2 pathway. Moreover, Nrf2-knockout (KO) mice and Nrf2 knockdown HK-2 cells were used to validate the role of Nrf2 signaling pathway in 4-OI-mediated alleviation of ERS caused by renal IRI. We demonstrated that 4-OI relieved renal injury and suppressed ERS in wild-type mice, while the therapeutic role was not shown in Nrf2-KO mice. Similarly, 4-OI could exert cytoprotective effect and inhibit ERS in HK-2 cells after H/R, but not in Nrf2 knockdown cells. Our in vivo and in vitro studies revealed that 4-OI protected renal IRI through attenuating ERS via Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Succinatos , Camundongos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos Endogâmicos C57BL , Rim/patologia , Estresse Oxidativo , Traumatismo por Reperfusão/metabolismo , Estresse do Retículo Endoplasmático , Apoptose
2.
World J Surg ; 47(5): 1153-1162, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36745198

RESUMO

BACKGROUND: Facilitating the recurrence of spontaneous voiding is considered to be a way to prevent urinary retention after surgery, which is of great importance in cholecystectomy. This study aimed to assess the effect of transcutaneous electrical acupoint stimulation (TEAS) on spontaneous voiding recovery after laparoscopic cholecystectom. METHODS: Participants who underwent elective laparoscopic cholecystectomy were randomly assigned to either the TEAS group or the sham group. Active TEAS or sham TEAS at specific acupuncture points was conducted intraoperatively and postoperatively. The primary outcome was the recovery speed of spontaneous voiding ability after surgery and secondary outcomes included postoperative urinary retention (POUR), voiding dysfunction, pain, anxiety and depression, and early recovery after surgery. RESULTS: A total of 1,948 participants were recruited and randomized to TEAS (n = 975) or sham (n = 973) between August 2018 and June 2020. TEAS shortens the time delay of the first spontaneous voiding after laparoscopic cholecystectomy (5.6 h [IQR, 3.7-8.1 h] in the TEAS group vs 7.0 h [IQR, 4.7-9.7 h] in the sham group) (p < 0.001). The TEAS group experienced less POUR (p = 0.020), less voiding difficulty (p < 0.001), less anxiety and depression (p < 0.001), reduced pain (p = 0.007), and earlier ambulation (p = 0.01) than the sham group. CONCLUSIONS: Our results showed that TEAS is an effective approach to accelerate the recovery of spontaneous voiding and reduce POUR which facilitates recovery for patients after laparoscopic cholecystectomy.


Assuntos
Colecistectomia Laparoscópica , Estimulação Elétrica Nervosa Transcutânea , Retenção Urinária , Humanos , Colecistectomia Laparoscópica/efeitos adversos , Estimulação Elétrica Nervosa Transcutânea/métodos , Retenção Urinária/etiologia , Retenção Urinária/terapia , Pontos de Acupuntura , Complicações Pós-Operatórias , Dor
3.
Exp Biol Med (Maywood) ; 247(14): 1264-1276, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35538652

RESUMO

Mitochondria need to interact with the nucleus under homeostasis and stress to maintain cellular demands and nuclear transcriptional programs. Disrupted mitonuclear interaction is involved in many disease processes. However, the role of mitonuclear signaling regulators in endotoxin-induced acute lung injury (ALI) remains unknown. Nicotinamide adenine dinucleotide (NAD+) is closely related to mitonuclear interaction with its central role in mitochondrial metabolism. In the current study, C57BL/6J mice were administrated with lipopolysaccharide 15 mg/kg to induce endotoxin-induced ALI and investigated whether the NAD+ precursor nicotinamide mononucleotide (NMN) could preserve mitonuclear interaction and alleviate ALI. After pretreatment with NMN for 7 days, NAD+ levels in the mitochondrial, nucleus, and total intracellular were significantly increased in endotoxemia mice. Moreover, supplementation of NMN alleviated lung pathologic injury, reduced ROS levels, increased MnSOD activities, mitigated mitochondrial dysfunction, ameliorated the defects in the nucleus morphology, and these cytoprotective effects were accompanied by preserving mitonuclear interaction (including mitonuclear protein imbalance and the mitochondrial unfolded protein response, UPRmt). Furthermore, NAD+-mediated mitonuclear protein imbalance and UPRmt are probably regulated by deacetylase Sirtuin1 (SIRT1). Taken together, our results indicated that NMN pretreatment ameliorated ALI by inducing mitonuclear protein imbalance and activating the UPRmt in an SIRT1-dependent manner.


Assuntos
Lesão Pulmonar Aguda , Mononucleotídeo de Nicotinamida , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Endotoxinas , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia , Sirtuína 1
4.
Oxid Med Cell Longev ; 2021: 9034376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927798

RESUMO

Various pharmacological agents and protective methods have been shown to reverse pneumoperitoneum-related lung injury, but identifying the best strategy is challenging. Herein, we employed lung tissues and blood samples from C57BL/6 mice with pneumoperitoneum-induced lung injury and blood samples from patients who received laparoscopic gynecological surgery to investigate the therapeutic role of hydromorphone in pneumoperitoneum-induced lung injury along with the underlying mechanism. We found that pretreatment with hydromorphone alleviated lung injury in mice that underwent CO2 insufflation, decreased the levels of myeloperoxidase (MPO), total oxidant status (TOS), and oxidative stress index (OSI), and increased total antioxidant status (TAS). In addition, after pretreatment with hydromorphone, upregulated HO-1 protein expression, reduced mitochondrial DNA content, and improved mitochondrial morphology and dynamics were observed in mice subjected to pneumoperitoneum. Immunohistochemical staining also verified that hydromorphone could increase the expression of HO-1 in lung tissues in mice subjected to CO2 pneumoperitoneum. Notably, in mice treated with HO-1-siRNA, the protective effects of hydromorphone against pneumoperitoneum-induced lung injury were abolished, and hydromorphone did not have additional protective effects on mitochondria. Additionally, in clinical patients who received laparoscopic gynecological surgery, pretreatment with hydromorphone resulted in lower serum levels of club cell secretory protein-16 (CC-16) and intercellular adhesion molecule-1 (ICAM-1), a lower prooxidant-antioxidant balance (PAB), and higher heme oxygenase-1 (HO-1) activity than morphine pretreatment. Collectively, our results suggest that hydromorphone protects against CO2 pneumoperitoneum-induced lung injury via HO-1-regulated mitochondrial dynamics and may be a promising strategy to treat CO2 pneumoperitoneum-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/etiologia , Dióxido de Carbono/efeitos adversos , Heme Oxigenase-1/metabolismo , Hidromorfona/uso terapêutico , Dinâmica Mitocondrial/genética , Pneumoperitônio/complicações , Lesão Pulmonar Aguda/fisiopatologia , Animais , Hidromorfona/farmacologia , Masculino , Camundongos
5.
J Surg Res ; 256: 258-266, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32712439

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a common complication of sepsis. Although sepsis is effectively managed with the administration of antibiotics and source control, which may include surgical intervention, SAE usually leads to prolonged cognitive dysfunction affecting the quality of life of the patients. In this study, we investigated the possible effect of electroacupuncture (EA) on cognition in a model of SAE induced by cecal ligation and puncture (CLP). MATERIALS AND METHODS: The rats were randomly divided into four groups: the control group, the CLP group, the CLP with EA treatment group (CLP + EA), and the CLP with sham EA treatment group (CLP + sham EA). EA at DU20, LI11, and ST36 or sham EA was performed 30 min daily for 10 consecutive days starting from 2 days before CLP. Then cognitive function was examined by the Morris water maze test. On day 14 after CLP surgery, the synaptic injury, neuron loss, and oxidative stress were studied. RESULTS: Rats with EA treatment showed improved survival rate, spatial learning, and memory abilities. The dendritic spine density, the synaptic proteins, and the hippocampal neuron number were also increased after EA treatment. Furthermore, EA suppressed oxidative stress through regulating the level of malondialdehyde and superoxide dismutase and enhanced the expression of antioxidant nuclear factor erythroid-2-related factor-2 and hemeoxygenase-1. But sham EA did not have the same effect. CONCLUSIONS: EA may protect against SAE-induced cognitive dysfunction by inhibiting synaptic injury, neuronal loss, and oxidative stress, and the nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 signaling pathway may be involved in this effect.


Assuntos
Disfunção Cognitiva/terapia , Eletroacupuntura , Encefalopatia Associada a Sepse/terapia , Sepse/complicações , Animais , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/patologia , Estresse Oxidativo/fisiologia , Ratos , Sepse/terapia , Encefalopatia Associada a Sepse/diagnóstico , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/patologia , Transdução de Sinais/fisiologia , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA