Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 920: 170818, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342461

RESUMO

In this study, we synthesized nano zero-valent iron incorporated with a multifunctional molybdenum disulfide film (MoS2@nZVI). The material exhibited a 100.00 % removal efficiency for sulfamethoxazole (SMX) and achieved a kobs of 0.4485 min-1 within 10 min. The excellent degradation performance can be attributed to the incorporation of the MoS2 film, which facilitated Fe2+ regeneration. Simultaneously, the MoS2 film assisted in proton accumulation and electron transfer, thereby amplifying the efficiency of SMX degradation across a wide pH range. Comprehensive experimental examinations and characterizations confirmed the selectivity and stability of the MoS2@nZVI catalysts, encompassing both degradation efficiency and structural stability. Interestingly, the MoS2@nZVI/PMS system for SMX degradation significantly involved a non-radical mechanism (1O2), along with radicals (SO4·-, ·OH, and O2·-). The direct oxidation of PMS by Fe2+ not only facilitated the generation of ·OH and SO4·- but also actively engaged in a reaction with O2, leading to the production of O2·-. The primary pathway for 1O2 production was established through the interplay between Mo6+ and O2·-, in conjunction with the direct electron transfer (DET) mechanism between PMS and SMX. The contributions of these active species to SMX degradation occurred in the following precedence: SO4·- > 1O2 > ·OH > O2·-. Notably, the primary pathways for radicals and non-radicals were studied during separate reaction periods. This investigation proposed a promising approach for mitigating pharmaceutical pollutants using a transition metal sulfide-modified nZVI catalyst.

2.
J Hazard Mater ; 458: 131968, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429190

RESUMO

Both molybdenum disulfide (MoS2) and nano zero-valent iron (nZVI) exhibit excellent adsorption abilities. However, the constrained conductivity of MoS2 and the lack of selectivity of nZVI for electron transfer still pose challenges. In this study, we designed a series of novel nano zero-valent iron supported by molybdenum disulfide composites (nZVI@MD) with multiple electron-rich active sites, including iron dopant replacement, iron atom intercalation and exposed Mo4+, for effective removal of Cr(VI). Results showed that preparation temperature and the amount of MoS2 added were identified as the two most significant factors affecting the reduction properties of nZVI@MD. Systematic experiments revealed that the nZVI@MD exhibited good anti-interference performance, stability and reusability due to its excellent electron selectivity. Characterization results exhibited that iron atoms replaced the sulfur vacancies in MoS2 and inserted into an intercalation of MoS2 during the preparation process. The mechanisms underlying the uptake of Cr(VI) by nZVI@MD can be proposed as follows: (i) electrostatic interactions, (ii) reduction reaction, and (iii) co-precipitation involving Fe-O-Cr. Furthermore, nZVI@MD exhibited excellent electron activity, hydrophilicity and oxidation resistance, confirmed by density functional theory (DFT) calculations. This work provided new strategies and mechanistic insights for the rational design of adsorbents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA