Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Protoc ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769143

RESUMO

Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis. MZmine is an open-source software for the processing of raw spectral data generated by different MS platforms. Examples include liquid chromatography-MS, gas chromatography-MS and MS-imaging. These data might typically be associated with various applications including metabolomics and lipidomics. Moreover, the third version of the software, described herein, supports the processing of ion mobility spectrometry (IMS) data. The present protocol provides three distinct procedures to perform feature detection and annotation of untargeted MS data produced by different instrumental setups: liquid chromatography-(IMS-)MS, gas chromatography-MS and (IMS-)MS imaging. For training purposes, example datasets are provided together with configuration batch files (i.e., list of processing steps and parameters) to allow new users to easily replicate the described workflows. Depending on the number of data files and available computing resources, we anticipate this to take between 2 and 24 h for new MZmine users and nonexperts. Within each procedure, we provide a detailed description for all processing parameters together with instructions/recommendations for their optimization. The main generated outputs are represented by aligned feature tables and fragmentation spectra lists that can be used by other third-party tools for further downstream analysis.

2.
Metabolomics ; 20(2): 41, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480600

RESUMO

BACKGROUND: The National Cancer Institute issued a Request for Information (RFI; NOT-CA-23-007) in October 2022, soliciting input on using and reusing metabolomics data. This RFI aimed to gather input on best practices for metabolomics data storage, management, and use/reuse. AIM OF REVIEW: The nuclear magnetic resonance (NMR) Interest Group within the Metabolomics Association of North America (MANA) prepared a set of recommendations regarding the deposition, archiving, use, and reuse of NMR-based and, to a lesser extent, mass spectrometry (MS)-based metabolomics datasets. These recommendations were built on the collective experiences of metabolomics researchers within MANA who are generating, handling, and analyzing diverse metabolomics datasets spanning experimental (sample handling and preparation, NMR/MS metabolomics data acquisition, processing, and spectral analyses) to computational (automation of spectral processing, univariate and multivariate statistical analysis, metabolite prediction and identification, multi-omics data integration, etc.) studies. KEY SCIENTIFIC CONCEPTS OF REVIEW: We provide a synopsis of our collective view regarding the use and reuse of metabolomics data and articulate several recommendations regarding best practices, which are aimed at encouraging researchers to strengthen efforts toward maximizing the utility of metabolomics data, multi-omics data integration, and enhancing the overall scientific impact of metabolomics studies.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Automação
3.
Exposome ; 4(1): osae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344436

RESUMO

This paper explores the exposome concept and its role in elucidating the interplay between environmental exposures and human health. We introduce two key concepts critical for exposomics research. Firstly, we discuss the joint impact of genetics and environment on phenotypes, emphasizing the variance attributable to shared and nonshared environmental factors, underscoring the complexity of quantifying the exposome's influence on health outcomes. Secondly, we introduce the importance of advanced data-driven methods in large cohort studies for exposomic measurements. Here, we introduce the exposome-wide association study (ExWAS), an approach designed for systematic discovery of relationships between phenotypes and various exposures, identifying significant associations while controlling for multiple comparisons. We advocate for the standardized use of the term "exposome-wide association study, ExWAS," to facilitate clear communication and literature retrieval in this field. The paper aims to guide future health researchers in understanding and evaluating exposomic studies. Our discussion extends to emerging topics, such as FAIR Data Principles, biobanked healthcare datasets, and the functional exposome, outlining the future directions in exposomic research. This abstract provides a succinct overview of our comprehensive approach to understanding the complex dynamics of the exposome and its significant implications for human health.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38124900

RESUMO

Organophosphate (OP) pesticides remain a worldwide health concern due to their acute or chronic poisoning and widespread use in agriculture around the world. There is a need for robust and field-deployable tools for onsite detection of OP pesticides in food and water. Herein, we present an integrated smartphone/resistive biosensor for simple, rapid, reagentless, and sensitive monitoring of OP pesticides in food and environmental water. The biosensor leverages the hydrolytic activity of acetylcholinesterase (AChE) to its substrate, acetylcholine (ACh), and unique transport properties of polyaniline nanofibers (PAnNFs) of chitosan/AChE/PAnNF/carbon nanotube (CNT) nanocomposite film on a gold interdigitated electrode. The principle of the sensor relies on OP inhibiting AChE, thus, reducing the rate of ACh hydrolysis and consequently decreasing the rate of protons doping the PAnNFs. Such resulted decrease in conductance of PAnNF can be used to quantify OP pesticides in a sample. A mobile app for the biosensor was developed for analyzing measurement data and displaying and sharing testing results. Under optimal conditions, the biosensor demonstrated a wide linear range (1 ppt-100 ppb) with a low detection limit (0.304 ppt) and high reproducibility (RSD <5%) for Paraoxon-Methyl (PM), a model analyte. Furthermore, the biosensor was successfully applied for analyzing PM spiked food/water samples with an average recovery rate of 98.3% and provided comparable results with liquid chromatography-mass spectrometry. As such, the nanosensing platform provides a promising tool for onsite rapid and sensitive detection of OP pesticides in food and environmental water.

6.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778509

RESUMO

Untargeted lipidomics allows analysis of a broader range of lipids than targeted methods and permits discovery of unknown compounds. Previous ring trials have evaluated the reproducibility of targeted lipidomics methods, but inter-laboratory comparison of compound identification and unknown feature detection in untargeted lipidomics has not been attempted. To address this gap, five laboratories analyzed a set of mammalian tissue and biofluid reference samples using both their own untargeted lipidomics procedures and a common chromatographic and data analysis method. While both methods yielded informative data, the common method improved chromatographic reproducibility and resulted in detection of more shared features between labs. Spectral search against the LipidBlast in silico library enabled identification of over 2,000 unique lipids. Further examination of LC-MS/MS and ion mobility data, aided by hybrid search and spectral networking analysis, revealed spectral and chromatographic patterns useful for classification of unknown features, a subset of which were highly reproducible between labs. Overall, our method offers enhanced compound identification performance compared to targeted lipidomics, demonstrates the potential of harmonized methods to improve inter-site reproducibility for quantitation and feature alignment, and can serve as a reference to aid future annotation of untargeted lipidomics data.

7.
Metabolites ; 12(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736424

RESUMO

The number of metabolomics studies and spectral libraries for compound annotation (i.e., assigning possible compound identities to a fragmentation spectrum) has been growing steadily in recent years. Accompanying this growth is the number of mass spectra available for searching through those libraries. As the size of spectral libraries grows, accurate and fast compound annotation becomes more challenging. We herein report a prescreening algorithm that was developed to address the speed of spectral search under the constraint of low memory requirements. This prescreening has been incorporated into the Automated Data Analysis Pipeline Spectral Knowledgebase (ADAP-KDB) and can be applied to compound annotation by searching other spectral libraries as well. Performance of the prescreening algorithm was evaluated for different sets of parameters and compared to the original ADAP-KDB spectral search and the MSSearch software. The comparison has demonstrated that the new algorithm is about four-times faster than the original when searching for low-resolution mass spectra, and about as fast as the original when searching for high-resolution mass spectra. However, the new algorithm is still slower than MSSearch due to the relational database design of the former. The new search workflow can be tried out at the ADAP-KDB web portal.

8.
Anal Chem ; 93(36): 12213-12220, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34455770

RESUMO

We report the development of a spectral knowledgebase named ADAP-KDB for tracking and prioritizing unknown gas chromatography-mass spectrometry (GC-MS) spectra in the NIH's Metabolomics Data Repository-a national and international repository for metabolomics data. ADAP-KDB consists of two parts. One part is a computational workflow that preprocesses raw mass spectrometry data and derives consensus mass spectra. The other part is a web portal for users to browse the consensus spectra and match query spectra against them. For each consensus spectrum, the Gini-Simpson diversity index and the p-value from χ2 goodness-of-fit test are calculated to measure its statistical significance, which enables prioritization of unknown mass spectra for subsequent costly compound identification.


Assuntos
Metabolômica , Software , Cromatografia Gasosa-Espectrometria de Massas , Bases de Conhecimento , Espectrometria de Massas
9.
Cancers (Basel) ; 13(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203215

RESUMO

Cytosolic 10-formyltetrahydrofolate dehydrogenase (ALDH1L1) is commonly downregulated in human cancers through promoter methylation. We proposed that ALDH1L1 loss promotes malignant tumor growth. Here, we investigated the effect of the Aldh1l1 mouse knockout (Aldh1l1-/-) on hepatocellular carcinoma using a chemical carcinogenesis model. Fifteen-day-old male Aldh1l1 knockout mice and their wild-type littermate controls (Aldh1l1+/+) were injected intraperitoneally with 20 µg/g body weight of DEN (diethylnitrosamine). Mice were sacrificed 10, 20, 28, and 36 weeks post-DEN injection, and livers were examined for tumor multiplicity and size. We observed that while tumor multiplicity did not differ between Aldh1l1-/- and Aldh1l1+/+ animals, larger tumors grew in Aldh1l1-/- compared to Aldh1l1+/+ mice at 28 and 36 weeks. Profound differences between Aldh1l1-/- and Aldh1l1+/+ mice in the expression of inflammation-related genes were seen at 10 and 20 weeks. Of note, large tumors from wild-type mice showed a strong decrease of ALDH1L1 protein at 36 weeks. Metabolomic analysis of liver tissues at 20 weeks showed stronger differences in Aldh1l1+/+ versus Aldh1l1-/- metabotypes than at 10 weeks, which underscores metabolic pathways that respond to DEN in an ALDH1L1-dependent manner. Our study indicates that Aldh1l1 knockout promoted liver tumor growth without affecting tumor initiation or multiplicity.

10.
Anal Chem ; 93(4): 1912-1923, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33467846

RESUMO

A growing number of software tools have been developed for metabolomics data processing and analysis. Many new tools are contributed by metabolomics practitioners who have limited prior experience with software development, and the tools are subsequently implemented by users with expertise that ranges from basic point-and-click data analysis to advanced coding. This Perspective is intended to introduce metabolomics software users and developers to important considerations that determine the overall impact of a publicly available tool within the scientific community. The recommendations reflect the collective experience of an NIH-sponsored Metabolomics Consortium working group that was formed with the goal of researching guidelines and best practices for metabolomics tool development. The recommendations are aimed at metabolomics researchers with little formal background in programming and are organized into three stages: (i) preparation, (ii) tool development, and (iii) distribution and maintenance.


Assuntos
Computação em Nuvem , Metabolômica/métodos , Software
11.
Nat Biotechnol ; 39(2): 169-173, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169034

RESUMO

We engineered a machine learning approach, MSHub, to enable auto-deconvolution of gas chromatography-mass spectrometry (GC-MS) data. We then designed workflows to enable the community to store, process, share, annotate, compare and perform molecular networking of GC-MS data within the Global Natural Product Social (GNPS) Molecular Networking analysis platform. MSHub/GNPS performs auto-deconvolution of compound fragmentation patterns via unsupervised non-negative matrix factorization and quantifies the reproducibility of fragmentation patterns across samples.


Assuntos
Algoritmos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Animais , Anuros , Humanos
12.
Hum Genomics ; 14(1): 41, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168096

RESUMO

BACKGROUND: Mitochondrial folate enzyme ALDH1L2 (aldehyde dehydrogenase 1 family member L2) converts 10-formyltetrahydrofolate to tetrahydrofolate and CO2 simultaneously producing NADPH. We have recently reported that the lack of the enzyme due to compound heterozygous mutations was associated with neuro-ichthyotic syndrome in a male patient. Here, we address the role of ALDH1L2 in cellular metabolism and highlight the mechanism by which the enzyme regulates lipid oxidation. METHODS: We generated Aldh1l2 knockout (KO) mouse model, characterized its phenotype, tissue histology, and levels of reduced folate pools and applied untargeted metabolomics to determine metabolic changes in the liver, pancreas, and plasma caused by the enzyme loss. We have also used NanoString Mouse Inflammation V2 Code Set to analyze inflammatory gene expression and evaluate the role of ALDH1L2 in the regulation of inflammatory pathways. RESULTS: Both male and female Aldh1l2 KO mice were viable and did not show an apparent phenotype. However, H&E and Oil Red O staining revealed the accumulation of lipid vesicles localized between the central veins and portal triads in the liver of Aldh1l2-/- male mice indicating abnormal lipid metabolism. The metabolomic analysis showed vastly changed metabotypes in the liver and plasma in these mice suggesting channeling of fatty acids away from ß-oxidation. Specifically, drastically increased plasma acylcarnitine and acylglycine conjugates were indicative of impaired ß-oxidation in the liver. Our metabolomics data further showed that mechanistically, the regulation of lipid metabolism by ALDH1L2 is linked to coenzyme A biosynthesis through the following steps. ALDH1L2 enables sufficient NADPH production in mitochondria to maintain high levels of glutathione, which in turn is required to support high levels of cysteine, the coenzyme A precursor. As the final outcome, the deregulation of lipid metabolism due to ALDH1L2 loss led to decreased ATP levels in mitochondria. CONCLUSIONS: The ALDH1L2 function is important for CoA-dependent pathways including ß-oxidation, TCA cycle, and bile acid biosynthesis. The role of ALDH1L2 in the lipid metabolism explains why the loss of this enzyme is associated with neuro-cutaneous diseases. On a broader scale, our study links folate metabolism to the regulation of lipid homeostasis and the energy balance in the cell.


Assuntos
Leucovorina/análogos & derivados , Metabolismo dos Lipídeos/genética , Metabolômica/métodos , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Tetra-Hidrofolatos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Leucovorina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Síndrome de Sjogren-Larsson/genética , Síndrome de Sjogren-Larsson/metabolismo
13.
Methods Mol Biol ; 2104: 25-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31953811

RESUMO

The informatics pipeline for making sense of untargeted LC-MS or GC-MS data starts with preprocessing the raw data. Results from data preprocessing undergo statistical analysis and subsequently mapped to metabolic pathways for placing untargeted metabolomics data in the biological context. ADAP is a suite of computational algorithms that has been developed specifically for preprocessing LC-MS and GC-MS data. It consists of two separate computational workflows that extract compound-relevant information from raw LC-MS and GC-MS data, respectively. Computational steps include construction of extracted ion chromatograms, detection of chromatographic peaks, spectral deconvolution, and alignment. The two workflows have been incorporated into the cross-platform and graphical MZmine 2 framework and ADAP-specific graphical user interfaces have been developed for using ADAP with ease. This chapter summarizes the algorithmic principles underlying key steps in the two workflows and illustrates how to apply ADAP to preprocess LC-MS and GC-MS data.


Assuntos
Biologia Computacional/métodos , Interpretação Estatística de Dados , Metabolômica , Software , Algoritmos , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Metabolômica/métodos , Interface Usuário-Computador , Fluxo de Trabalho
14.
iScience ; 20: 248-264, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31593839

RESUMO

Diagnosis of neurodegenerative diseases hinges on "seed" proteins detected in disease-specific aggregates. These inclusions contain diverse constituents, adhering through aberrant interactions that our prior data indicate are nonrandom. To define preferential protein-protein contacts mediating aggregate coalescence, we created click-chemistry reagents that cross-link neighboring proteins within human, APPSw-driven, neuroblastoma-cell aggregates. These reagents incorporate a biotinyl group to efficiently recover linked tryptic-peptide pairs. Mass-spectroscopy outputs were screened for all possible peptide pairs in the aggregate proteome. These empirical linkages, ranked by abundance, implicate a protein-adherence network termed the "aggregate contactome." Critical hubs and hub-hub interactions were assessed by RNAi-mediated rescue of chemotaxis in aging nematodes, and aggregation-driving properties were inferred by multivariate regression and neural-network approaches. Aspirin, while disrupting aggregation, greatly simplified the aggregate contactome. This approach, and the dynamic model of aggregate accrual it implies, reveals the architecture of insoluble-aggregate networks and may reveal targets susceptible to interventions to ameliorate protein-aggregation diseases.

15.
Sci Rep ; 9(1): 14937, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624291

RESUMO

ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1-/- mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1-/- mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1-/- mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1-/- mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.


Assuntos
Glicina/metabolismo , Fígado/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Animais , Feminino , Ácido Formiminoglutâmico/análise , Ácido Formiminoglutâmico/metabolismo , Glicina/análise , Histidina/metabolismo , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Fígado/química , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Serina/metabolismo , Tetra-Hidrofolatos/biossíntese
16.
Anal Chem ; 91(14): 9069-9077, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31274283

RESUMO

We report a multivariate curve resolution (MCR)-based spectral deconvolution workflow for untargeted gas chromatography-mass spectrometry metabolomics. As an essential step in preprocessing such data, spectral deconvolution computationally separates ions that are in the same mass spectrum but belong to coeluting compounds that are not resolved completely by chromatography. As a result of this computational separation, spectral deconvolution produces pure fragmentation mass spectra. Traditionally, spectral deconvolution has been achieved by using a model peak approach. We describe the fundamental differences between the model peak-based and the MCR-based spectral deconvolution and report ADAP-GC 4.0 that employs the latter approach while overcoming the associated computational complexity. ADAP-GC 4.0 has been evaluated using GC-TOF data sets from a 27-standards mixture at different dilutions and urine with the mixture spiked in, and GC Orbitrap data sets from mixtures of different standards. It produced the average matching scores 960, 959, and 926 respectively. Moreover, its performance has been compared against MS-DIAL, eRah, and ADAP-GC 3.2, and ADAP-GC 4.0 demonstrated a higher number of matched compounds and up to 6% increase of the average matching score.


Assuntos
Algoritmos , Cromatografia Gasosa-Espectrometria de Massas/estatística & dados numéricos , Metaboloma , Metabolômica/estatística & dados numéricos , Análise por Conglomerados , Análise Multivariada , Software , Urina/química , Fluxo de Trabalho
18.
J Proteome Res ; 17(1): 470-478, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29076734

RESUMO

ADAP-GC is an automated computational workflow for extracting metabolite information from raw, untargeted gas chromatography-mass spectrometry metabolomics data. Deconvolution of coeluting analytes is a critical step in the workflow, and the underlying algorithm is able to extract fragmentation mass spectra of coeluting analytes with high accuracy. However, its latest version ADAP-GC 3.0 was not user-friendly. To make ADAP-GC easier to use, we have developed ADAP-GC 3.2 and describe here the improvements on three aspects. First, all of the algorithms in ADAP-GC 3.0 written in R have been replaced by their analogues in Java and incorporated into MZmine 2 to make the workflow user-friendly. Second, the clustering algorithm DBSCAN has replaced the original hierarchical clustering to allow faster spectral deconvolution. Finally, algorithms originally developed for constructing extracted ion chromatograms (EICs) and detecting EIC peaks from LC-MS data are incorporated into the ADAP-GC workflow, allowing the latter to process high mass resolution data. Performance of ADAP-GC 3.2 has been evaluated using unit mass resolution data from standard-mixture and urine samples. The identification and quantitation results were compared with those produced by ADAP-GC 3.0, AMDIS, AnalyzerPro, and ChromaTOF. Identification results for high mass resolution data derived from standard-mixture samples are presented as well.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Software , Algoritmos , Análise por Conglomerados , Armazenamento e Recuperação da Informação , Fluxo de Trabalho
19.
Anal Chem ; 89(17): 8696-8703, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28752754

RESUMO

False positive and false negative peaks detected from extracted ion chromatograms (EIC) are an urgent problem with existing software packages that preprocess untargeted liquid or gas chromatography-mass spectrometry metabolomics data because they can translate downstream into spurious or missing compound identifications. We have developed new algorithms that carry out the sequential construction of EICs and detection of EIC peaks. We compare the new algorithms to two popular software packages XCMS and MZmine 2 and present evidence that these new algorithms detect significantly fewer false positives. Regarding the detection of compounds known to be present in the data, the new algorithms perform at least as well as XCMS and MZmine 2. Furthermore, we present evidence that mass tolerance in m/z should be favored rather than mass tolerance in ppm in the process of constructing EICs. The mass tolerance parameter plays a critical role in the EIC construction process and can have immense impact on the detection of EIC peaks.


Assuntos
Algoritmos , Cromatografia Líquida/estatística & dados numéricos , Espectrometria de Massas/estatística & dados numéricos , Metabolômica/estatística & dados numéricos , Software
20.
Anal Chem ; 89(17): 8689-8695, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28752757

RESUMO

XCMS and MZmine 2 are two widely used software packages for preprocessing untargeted LC/MS metabolomics data. Both construct extracted ion chromatograms (EICs) and detect peaks from the EICs, the first two steps in the data preprocessing workflow. While both packages have performed admirably in peak picking, they also detect a problematic number of false positive EIC peaks and can also fail to detect real EIC peaks. The former and latter translate downstream into spurious and missing compounds and present significant limitations with most existing software packages that preprocess untargeted mass spectrometry metabolomics data. We seek to understand the specific reasons why XCMS and MZmine 2 find the false positive EIC peaks that they do and in what ways they fail to detect real compounds. We investigate differences of EIC construction methods in XCMS and MZmine 2 and find several problems in the XCMS centWave peak detection algorithm which we show are partly responsible for the false positive and false negative compound identifications. In addition, we find a problem with MZmine 2's use of centWave. We hope that a detailed understanding of the XCMS and MZmine 2 algorithms will allow users to work with them more effectively and will also help with future algorithmic development.


Assuntos
Cromatografia Líquida/estatística & dados numéricos , Espectrometria de Massas/estatística & dados numéricos , Metabolômica/estatística & dados numéricos , Software , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA