Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Integr Plant Biol ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780111

RESUMO

Grain yield is determined mainly by grain number and grain weight. In this study, we identified and characterized MORE GRAINS1 (MOG1), a gene associated with grain number and grain weight in rice (Oryza sativa L.), through map-based cloning. Overexpression of MOG1 increased grain yield by 18.6%-22.3% under field conditions. We determined that MOG1, a bHLH transcription factor, interacts with OsbHLH107 and directly activates the expression of LONELY GUY (LOG), which encodes a cytokinin-activating enzyme and the cell expansion gene EXPANSIN-LIKE1 (EXPLA1), positively regulating grain number per panicle and grain weight. Natural variations in the promoter and coding regions of MOG1 between Hap-LNW and Hap-HNW alleles resulted in changes in MOG1 expression level and transcriptional activation, leading to functional differences. Haplotype analysis revealed that Hap-HNW, which results in a greater number and heavier grains, has undergone strong selection but has been poorly utilized in modern lowland rice breeding. In summary, the MOG1-OsbHLH107 complex activates LOG and EXPLA1 expression to promote cell expansion and division of young panicles through the cytokinin pathway, thereby increasing grain number and grain weight. These findings suggest that Hap-HNW could be used in strategies to breed high-yielding temperate japonica lowland rice.

2.
Mol Breed ; 43(5): 41, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37312745

RESUMO

Panicle structure is one of the most important agronomic traits directly related to rice yield. This study identified a rice mutant basal primary branch 1 (bpb1), which exhibited a phenotype of reduced panicle length and arrested basal primary branch development. In addition, lignin content was found to be increased while cellulose content was decreased in bpb1 young panicles. Map-based cloning methods characterized the gene BPB1, which encodes a peptide transporter (PTR) family transporter. Phylogenetic tree analysis showed that the BPB1 family is highly conserved in plants, especially the PTR2 domain. It is worth noting that BPB1 is divided into two categories based on monocotyledonous and dicotyledonous plants. Transcriptome analysis showed that BPB1 mutation can promote lignin synthesis and inhibit cellulose synthesis, starch and sucrose metabolism, cell cycle, expression of various plant hormones, and some star genes, thereby inhibiting rice panicle length, resulting in basal primary branch development stagnant phenotypes. In this study, BPB1 provides new insights into the molecular mechanism of rice panicle structure regulation by BPB1 by regulating lignin and cellulose content and several transcriptional metabolic pathways. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01389-x.

3.
Mol Biol Rep ; 50(7): 5879-5887, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231212

RESUMO

BACKGROUND: Rice grain chalkiness is an undesirable characteristic that affects grain quality. The aim of this study was to map QTLs controlling grain chalkiness in japonica rice. METHODS AND RESULTS: In this study, two japonica rice cultivars with similar grain shapes but different grain chalkiness rates were crossed and the F2 and BC1F2 populations were subjected to QTL-seq analysis to map the QTLs controlling the grain chalkiness rate. QTL-seq analysis revealed SNP index differences on chromosome 1 in both of the segregating populations. Using polymorphic markers between the two parents, QTL mapping was conducted on 213 individual plants in the BC1F2 population. QTL mapping confined a QTL controlling grain chalkiness, qChalk1, to a 1.1 Mb genomic region on chromosome 1. qChalk1 explained 19.7% of the phenotypic variation. CONCLUSION: A QTL controlling grain chalkiness qChalk1 was detected in both F2 and BC1F2 segregating populations by QTL-Seq and QTL mapping methods. This result would be helpful for further cloning of the genes controlling grain chalkiness in japonica rice.


Assuntos
Oryza , Oryza/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Grão Comestível/genética
4.
New Phytol ; 237(5): 1826-1842, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36440499

RESUMO

Previous studies have reported that PID2, which encodes a B-lectin receptor-like kinase, is a key gene in the resistance of rice to Magnaporthe oryzae strain ZB15. However, the PID2-mediated downstream signalling events remain largely unknown. The U-box E3 ubiquitin ligase OsPIE3 (PID2-interacting E3) was isolated and confirmed to play key roles in PID2-mediated rice blast resistance. Yeast two-hybrid analysis showed that the armadillo repeat region of OsPIE3 is required for its interaction with PID2. Further investigation demonstrated that OsPIE3 can modify the subcellular localisation of PID2, thus promoting its nuclear recruitment from the plasma membrane for protein degradation in the ubiquitin-proteasome system. Site-directed mutagenesis of a conserved cysteine site (C230S) within the U-box domain of OsPIE3 reduces PID2 translocation and ubiquitination. Genetic analysis suggested that OsPIE3 loss-of-function mutants exhibited enhanced resistance to M. oryzae isolate ZB15, whereas mutants with overexpressed OsPIE3 exhibited reduced resistance. Furthermore, the OsPIE3/PID2-double mutant displayed a similar blast phenotype to that of the PID2 single mutant, suggesting that OsPIE3 is a negative regulator and functions along with PID2 in blast disease resistance. Our findings confirm that the E3 ubiquitin ligase OsPIE3 is necessary for PID2-mediated rice blast disease resistance regulation.


Assuntos
Resistência à Doença , Oryza , Resistência à Doença/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Lectinas/metabolismo , Proteínas de Plantas/metabolismo , Ubiquitinação , Oryza/metabolismo , Doenças das Plantas
5.
Rice (N Y) ; 15(1): 52, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302917

RESUMO

BACKGROUND: Grain size and chalkiness is a critical agronomic trait affecting rice yield and quality. The application of transcriptomics to rice has widened the understanding of complex molecular responsive mechanisms, differential gene expression, and regulatory pathways under varying conditions. Similarly, metabolomics has also contributed drastically for rice trait improvements. As master regulators of plant growth and development, phys influence seed germination, vegetative growth, photoperiodic flowering, shade avoidance responses. OsPHYB can regulate a variety of plant growth and development processes, but little is known about the roles of rice gene OsPHYB in modulating grain development. RESULTS: In this study, rice phytochrome B (OsPHYB) was edited using CRISPR/Cas9 technology. We found that OsPHYB knockout increased rice grain size and chalkiness, and increased the contents of amylose, free fatty acids and soluble sugar, while the gel consistency and contents of proteins were reduced in mutant grains. Furthermore, OsPHYB is involved in the regulation of grain size and chalk formation by controlling cell division and complex starch grain morphology. Transcriptomic analysis revealed that loss of OsPHYB function affects multiple metabolic pathways, especially enhancement of glycolysis, fatty acid, oxidative phosphorylation, and antioxidant pathways, as well as differential expression of starch and phytohormone pathways. An analysis of grain metabolites showed an increase in the free fatty acids and lysophosphatidylcholine, whereas the amounts of sugars, alcohols, amino acids and derivatives, organic acids, phenolic acids, alkaloids, nucleotides and derivatives, and flavonoids decreased, which were significantly associated with grain size and chalk formation. CONCLUSIONS: Our study reveals that, OsPHYB plays an important regulatory role in the growth and development of rice grains, especially grain size and chalkiness. Furthermore, OsPHYB regulates grain size and chalkiness formation by affecting gene metabolism interaction network. Thus, this study not only revealed that OsPHYB plays a vital role in regulating grain size and chalkiness of rice but reveal new functions and highlighted the importance and value of OsPHYB in rice grain development and provide a new strategy for yield and quality improvement in rice breeding.

6.
Mol Breed ; 42(7): 39, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37313503

RESUMO

The phytochrome-interacting factor-like gene OsPIL15 negatively regulates grain size and 1000-grain weight, but its regulatory effect on rice quality traits is unknown. Here, knock-down, knock-out, and over-expression of OsPIL15 transgenic rice lines were used to investigate the effects of OsPIL15 on rice yield and quality traits. The results showed that knock-down or knock-out of OsPIL15 increased grain length and width, chalkiness, amylose content, glutenin and globulin content, and total protein content but reduced amylopectin content, total starch content, prolamin and albumin content, and gel consistency. Over-expression of OsPIL15 showed the opposite results, except for the reduction of prolamin content. Although OsPIL15 changed the grain size and weight, it had no effect on grain length/width ratio, brown rice rate, and milled rice rate. KEGG pathway enrichment analysis of differentially expressed genes between transgenic lines and wild type showed that OsPIL15 mainly regulated genes related to ribosome, metabolic pathways, and biosynthesis of secondary metabolites. Gene expression analysis showed that RNAi transgenic lines decreased OsCIN2 and OsSUS1 expression and increased OsGBSSI, OsSSI, OsAPGL2, and OsAPGL3 expression level, while over-expression of OsPIL15 increased OsCIN2, OsSUS1, OsSUS6, and OsSSI and decreased OsSSIIa, OsSSIIc, and OsAPGL2 expression level. These results revealed that OsPIL15 plays an important role in rice grain development. In addition to grain shape, OsPIL15 also regulates chalkiness, starch content, protein content, and gel consistency. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01311-x.

7.
Plant Biotechnol J ; 17(8): 1527-1537, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30628157

RESUMO

As members of the basic helix-loop-helix transcription factor families, phytochrome-interacting factors regulate an array of developmental responses ranging from seed germination to plant growth. However, little is known about their roles in modulating grain development. Here, we firstly analyzed the expression pattern of rice OsPIL genes in grains and found that OsPIL15 may play an important role in grain development. We then generated knockout (KO) OsPIL15 lines in rice using CRISPR/Cas9 technology, the silencing expression of OsPIL15 led to increased numbers of cells, which thus enhanced grain size and weight. Moreover, overexpression and suppression of OsPIL15 in the rice endosperm resulted in brown rice showing grain sizes and weights that were decreased and increased respectively. Further studies indicated that OsPIL15 binds to N1-box (CACGCG) motifs of the purine permease gene OsPUP7 promoter. Measurement of isopentenyl adenosine, a bioactive form of cytokinin (CTK), revealed increased contents in the OsPIL15-KO spikelets compared with the wild-type. Overall, our results demonstrate a possible pathway whereby OsPIL15 directly targets OsPUP7, affecting CTK transport and thereby influencing cell division and subsequent grain size. These findings provide a valuable insight into the molecular functions of OsPIL15 in rice grains, highlighting a useful genetic improvement leading to increased rice yield.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Nucleobases/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sistemas CRISPR-Cas , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Proteínas de Plantas/genética
8.
Plant Biotechnol J ; 17(4): 712-723, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30183128

RESUMO

Rice grain filling rate contributes largely to grain productivity and accumulation of nutrients. MicroRNAs (miRNAs) are key regulators of development and physiology in plants and become a novel key target for engineering grain size and crop yield. However, there is little studies, so far, showing the miRNA regulation of grain filling and rice yield, in consequence. Here, we show that suppressed expression of rice miR1432 (STTM1432) significantly improves grain weight by enhancing grain filling rate and leads to an increase in overall grain yield up to 17.14% in a field trial. Molecular analysis identified rice Acyl-CoA thioesterase (OsACOT), which is conserved with ACOT13 in other species, as a major target of miR1432 by cleavage. Moreover, overexpression of miR1432-resistant form of OsACOT (OXmACOT) resembled the STTM1432 plants, that is, a large margin of an increase in grain weight up to 46.69% through improving the grain filling rate. Further study indicated that OsACOT was involved in biosynthesis of medium-chain fatty acids. In addition, RNA-seq based transcriptomic analyses of transgenic plants with altered expression of miR1432 demonstrated that downstream genes of miR1432-regulated network are involved in fatty acid metabolism and phytohormones biosynthesis and also overlap with the enrichment analysis of co-expressed genes of OsACOT, which is consistent with the increased levels of auxin and abscisic acid in STTM1432 and OXmACOT plants. Overall, miR1432-OsACOT module plays an important role in grain filling in rice, illustrating its capacity for engineering yield improvement in crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Produtos Agrícolas , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
9.
BMC Plant Biol ; 17(1): 215, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162059

RESUMO

BACKGROUND: microRNAs (miRNAs) are important regulators in plant growth and development. miR159 is a conserved miRNA among different plant species and has various functions in plants. Studies on miR159 are mostly done on model plant, Arabidopsis thaliana. In rice, studies on miR159 were either based upon genome-wide expression analyses focused upon responses to different nitrogen forms and abiotic stress or upon phenotypic studies of transgenic plants overexpressing its precursor. STTM (Short Tandem Target Mimic) is an effective tool to block the activity of endogenous mature miRNA activity in plant. Therefore, specific roles of miR159 in rice could be explored by down regulating miR159 through STTM. RESULTS: In this study, expression of mature miR159 was successfully suppressed by STTM which resulted in the increased expressions of its two targets genes, OsGAMYB and OsGAMYBL1 (GAMYB-LIKE 1). Overall, STTM159 plants exhibited short stature along with smaller organ size and reduction in stem diameter, length of flag leaf, main panicle, spikelet hulls and grain size. Histological analysis of stem, leaf and mature spikelet hull showed the reduced number of small vascular bundles (SVB), less number of small veins (SV) between two big veins (LV) and less cell number in outer parenchyma. Gene Ontology (GO) enrichment analysis of differentially expressed genes between wild type plants and STTM159 transgenic plants showed that genes involved in cell division, auxin, cytokinin (CK) and brassinosteroids (BRs) biosynthesis and signaling are significantly down-regulated in STTM159 plants. CONCLUSION: Our data suggests that in rice, miR159 positively regulates organ size, including stem, leaf, and grain size due to the promotion of cell division. Further analysis from the RNA-seq data showed that the decreased cell divisions in STTM159 transgenic plants may result, at least partly from the lower expression of the genes involved in cell cycle and hormone homeostasis, which provides new insights of rice miR159-specific functions.


Assuntos
MicroRNAs/fisiologia , Oryza/fisiologia , RNA de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Repetições de Microssatélites , Oryza/genética , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Sementes/fisiologia , Transcriptoma
10.
PLoS One ; 10(9): e0137168, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355995

RESUMO

Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Sementes/genética , Análise de Sequência de RNA/métodos , Ciclo Celular/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genes de Plantas , Anotação de Sequência Molecular , Tamanho do Órgão/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sacarose/metabolismo
11.
J Exp Bot ; 66(9): 2723-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769309

RESUMO

Breeding for strong root systems is an important strategy for improving drought avoidance in rice. To clone genes responsible for strong root traits, an upland rice introgression line IL392 with thicker and longer roots than the background parent lowland rice Yuefu was selected. A quantitative trait locus (QTL), qRT9, controlling root thickness and root length was detected under hydroponic culture using 203 F(2:3) populations derived from a cross between Yuefu and IL392. The qRT9 locus explained 32.5% and 28.1% of the variance for root thickness and root length, respectively. Using 3185 F2 plants, qRT9 was ultimately narrowed down to an 11.5 kb region by substitution mapping. One putative basic helix-loop-helix (bHLH) transcription factor gene, LOC_Os09g28210 (named OsbHLH120), is annotated in this region. Sequences of OsbHLH120 in 11 upland rice and 13 lowland rice indicated that a single nucleotide polymorphism (SNP) at position 82 and an insertion/deletion (Indel) at position 628-642 cause amino acid changes and are conserved between upland rice and lowland rice. Phenotypic analysis indicated that the two polymorphisms were significantly associated with root thickness and root length under hydroponic culture. Quantitative real-time PCR showed that OsbHLH120 was strongly induced by polyethylene glycol (PEG), salt, and abscisic acid, but higher expression was present in IL392 roots than in Yuefu under PEG and salt stress. The successfully isolated locus, qRT9, enriches our knowledge of the genetic basis for drought avoidance and provides an opportunity for breeding drought avoidance varieties by utilizing valuable genes in the upland rice germplasm.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Estudos de Associação Genética , Dados de Sequência Molecular , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Melhoramento Vegetal , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Estresse Fisiológico
12.
BMC Plant Biol ; 14: 196, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25052585

RESUMO

BACKGROUND: The inferior spikelets are defined to be those at portions where the grains receive less photosynthetic products during the seed development. The typical inferior spikelets are physically located on the proximal secondary branches in a rice panicle and traditionally characterized by a later flowering time and a slower grain-filling rate, compared to those so-called superior spikelets. Grains produced on the inferior spikelets are consequently under-developed and lighter in weight than those formed on the superior spikelets. MicroRNAs (miRNAs) are recognized as key players in regulating plant development through post-transcriptional gene regulations. We previously presented the evidence that miRNAs may influence grain-filling rate and played a role in determining the grain weight and yield in rice. RESULTS: In this study, further analyses of the expressed small RNAs in superior and inferior spikelets were conducted at five distinct developmental stages of grain development. Totally, 457 known miRNAs and 13 novel miRNAs were analyzed, showing a differential expression of 141 known miRNAs between superior and inferior spikelets with higher expression levels of most miRNAs associated with the superior than the inferior spikelets during the early stage of grain filling. Genes targeted by those differentially expressed miRNAs (i.e. miR156, miR164, miR167, miR397, miR1861, and miR1867) were recognized to play roles in multiple developmental and signaling pathways related to plant hormone homeostasis and starch accumulation. CONCLUSIONS: Our data established a complicated link between miRNA dynamics and the traditional role of hormones in grain filling and development, providing new insights into the widely accepted concepts of the so-called superior and inferior spikelets in rice production.


Assuntos
MicroRNAs/metabolismo , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Expressão Gênica , Oryza/crescimento & desenvolvimento , Fenótipo , Análise de Sequência de RNA
13.
PLoS One ; 8(4): e61029, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593380

RESUMO

24 nt-siRNAs are the most abundant small interfering RNAs in rice grains aside from microRNAs. To investigate the roles that 24 nt-siRNAs played in the poor grain filling of rice inferior grains, dynamic variations of 24 nt-siRNAs in inferior grains were compared with those of superior grains by using small RNA deep sequencing technology. The results showed that 24 nt-siRNAs derived from multiple regions of rice genome, and the maintenance of the two strands of 24 nt-siRNA duplex was a non-random process. The amounts of 24 nt-siRNAs declined with the process of grain filling in both superior and inferior grains, but 24 nt-siRNAs in inferior grains was much higher than that of superior grains in each period we sampled. Bioinformatics prediction indicated that 24 nt-siRNAs targeted on more genes involved in most of the known KEGG rice pathways, such as the starch and sucrose biosynthesis pathway. Combined with digital gene expression profiling of target genes, 24 nt-siRNAs mapped on the antisense strands of exons were specifically investigated, but the abundance of 24 nt-siRNAs did not show negative correlations with their corresponding target genes. The results indicated that 24 nt-siRNAs were not involved in down-regulation of target genes. The potential biological meanings for this inconsistency were probably the results of methylation directed gene expression activation, or competition for small RNA stability methylation.


Assuntos
Genoma de Planta/genética , Oryza/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Sementes/enzimologia
14.
PLoS One ; 8(1): e54148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23365650

RESUMO

MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling.


Assuntos
Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/genética , RNA Mensageiro/genética , RNA de Plantas , Sequência de Bases , Grão Comestível/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Dados de Sequência Molecular , Oryza/embriologia , Oryza/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , RNA Mensageiro/metabolismo , Amido/biossíntese
15.
Curr Genet ; 59(1-2): 33-41, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23269362

RESUMO

Protein phosphatase 2A is a subgroup of widely conserved serine/threonine phosphatases and plays diverse roles in transcription, translation, differentiation, cell cycle, and signal transduction in many organisms. However, its roles in biotrophic and hemi-biotrophic phytopathogenic fungi remain to be investigated. In this study, we isolated an insertional mutant of the rice blast fungus Magnaporthe oryzae that was defective in vegetative hyphal growth. In the mutant, the T-DNA fragment was found to be inserted in the promoter region of a putative serine/threonine protein phosphatase 2A catalytic subunit (PP2Ac) gene MoPPG1. Deletion of MoPPG1 leads to severe defects in vegetative hyphal growth and conidiation. Conidia of the ∆Moppg1 null mutants were misshaped, and most of them were two-celled. The deletion mutants of MoPPG1 did not penetrate into host plant cells and failed to cause any disease lesions on rice leaves. Interestingly, significant reduction was found in the ∆Moppg1 null mutants in expression levels of several Rho GTPase family genes including MgCDC42, MgRHO3, and MgRAC1, which were important for pathogenesis of M. oryzae. Taken together, our results indicated that PP2Ac plays vital roles in asexual development and plant infection by regulating Rho GTPases in the rice blast fungus and perhaps other plant pathogenic fungi.


Assuntos
Domínio Catalítico , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Reprodução Assexuada/genética , Domínio Catalítico/genética , Domínio Catalítico/fisiologia , DNA Bacteriano/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Magnaporthe/enzimologia , Magnaporthe/genética , Magnaporthe/patogenicidade , Mutação , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2/genética
16.
J Exp Bot ; 62(14): 4943-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791435

RESUMO

MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. This work investigated miRNAs in rice (Oryza sativa), an important food crop. High-throughput sequencing technology was used to reveal expression differences in miRNAs between superior and inferior spikelets in rice (japonica cultivar Xinfeng 2) at 18 d after fertilization. Totals of 351 and 312 known miRNAs were obtained from the superior and inferior spikelets, respectively. Analysis of the expression profiles of these miRNAs showed that 189 miRNAs were differentially expressed between superior spikelets and inferior spikelets. In addition, 43 novel miRNAs were identified mostly by the accumulation of miRNA*s expressed differentially between the superior and inferior spikelets. Further analysis with bioinformatics software and comparison with existing databases showed that these differentially expressed miRNAs may individually participate in regulating hormone metabolism, carbohydrate metabolic pathways, and cell division during rice grain development. The results indicate that the slow grain-filling and low grain weight of rice inferior spikelets are attributed partly to differences in expression and function between superior and inferior spikelet miRNAs.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Oryza/genética , RNA de Plantas/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , RNA de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
Ying Yong Sheng Tai Xue Bao ; 20(2): 320-4, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19459370

RESUMO

To understand the effects of silicon on the growth and development of rice roots, a hydroponic experiment with 3 levels of silicon, i.e., no silicon (T1), 1.25 mmol silicon x L(-1) (T2), and 2 mmol silicon x L(-1) (T3), was conducted, using rice cultivars TN1 and Baixiangjing with high silicon uptake efficiency and Juanyejing and Hitomebore with low silicon uptake efficiency as test materials. The results showed that with the increase of silicon supply, the root dry mass, root-shoot ratio, lateral root number, and total root length of all test rice cultivars decreased, while the dry mass of above-ground parts, root number, and root diameter increased. Relatively higher silicon supply was beneficial to the differentiation and development of indefinite roots, but not favorable to the lateral roots. Under lower silicon supply, the root dry mass and root-shoot ratio of TN1 and Baixiangjing were significantly higher than those of Juanyejing and Hitomebore. Furthermore, the number of lateral roots and the total root length of Baixiangjing were also significantly higher than those of Juanyejing and Hitomebore. It was concluded that total root length and lateral root number were the main factors affecting rice silicon uptake efficiency.


Assuntos
Oryza/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Absorção , Genótipo , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Silício/análise , Silício/farmacologia
18.
Yi Chuan Xue Bao ; 29(12): 1095-9, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12693101

RESUMO

Maize dwarf mosaic is one of the devastating and widespread viral diseases in the world. So far, only a few genes were identified and mapped in the resistant materials. A new resistant elite inbred line Siyi was identified with resistance to maize dwarf mosaic virus strain B at early and adult stage. Two complementary dominant genes conditioned the resistance, with a new genetic model, of the maize inbred line were found at adult stage by the genetic analysis based on parents, F1, F2 and backcrosses in two years. The microsatellite analysis of a F2 population from the cross between Siyi and Mo17 was used to identify the two resistance genes on chromosome 3 and 6 respectively by 87 pairs of microsatellite markers. The linkage distance between phi029 and the one resistance gene on chromosome 3 is 14.5 cM, and phi126 to the other on chromosome 6 is 7.2 cM.


Assuntos
Genes Dominantes/genética , Vírus do Mosaico/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Genes de Plantas/genética , Imunidade Inata/genética , Repetições de Microssatélites , Doenças das Plantas/genética , Doenças das Plantas/virologia , Zea mays/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA