Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FEBS Open Bio ; 14(6): 1028-1034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740554

RESUMO

Glioblastoma (GBM) poses a significant challenge in oncology and stands as the most aggressive form of brain cancer. A primary contributor to its relentless nature is the stem-like cancer cells, called glioblastoma stem cells (GSCs). GSCs have the capacity for self-renewal and tumorigenesis, leading to frequent GBM recurrences and complicating treatment modalities. While natural killer (NK) cells exhibit potential in targeting and eliminating stem-like cancer cells, their efficacy within the GBM microenvironment is limited due to constrained infiltration and function. To address this limitation, novel investigations focusing on boosting NK cell activity against GSCs are imperative. This study presents two streamlined image-based assays assessing NK cell migration and cytotoxicity towards GSCs. It details protocols and explores the strengths and limitations of these methods. These assays could aid in identifying novel targets to enhance NK cell activity towards GSCs, facilitating the development of NK cell-based immunotherapy for improved GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Células Matadoras Naturais , Células-Tronco Neoplásicas , Células Matadoras Naturais/imunologia , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Movimento Celular/imunologia , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos
2.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136381

RESUMO

Glioblastoma (GBM) represents a paramount challenge as the most formidable primary brain tumor characterized by its rapid growth, aggressive invasiveness, and remarkable heterogeneity, collectively impeding effective therapeutic interventions. The cancer stem cells within GBM, GBM stem cells (GSCs), hold pivotal significance in fueling tumor advancement, therapeutic refractoriness, and relapse. Given their unique attributes encompassing self-renewal, multipotent differentiation potential, and intricate interplay with the tumor microenvironment, targeting GSCs emerges as a critical strategy for innovative GBM treatments. Natural killer (NK) cells, innate immune effectors recognized for their capacity to selectively detect and eliminate malignancies without the need for prior sensitization, offer substantial therapeutic potential. Harnessing the inherent capabilities of NK cells can not only directly engage tumor cells but also augment broader immune responses. Encouraging outcomes from clinical investigations underscore NK cells as a potentially effective modality for cancer therapy. Consequently, NK cell-based approaches hold promise for effectively targeting GSCs, thereby presenting an avenue to enhance treatment outcomes for GBM patients. This review outlines GBM's intricate landscape, therapeutic challenges, GSC-related dynamics, and elucidates the potential of NK cell as an immunotherapeutic strategy directed towards GSCs.

3.
Nat Commun ; 14(1): 7829, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030616

RESUMO

How early life experience is translated into storable epigenetic information leading to behavioral changes remains poorly understood. Here we found that Zika virus (ZIKV) induced-maternal immune activation (MIA) imparts offspring with anxiety- and depression-like behavior. By integrating bulk and single-nucleus RNA sequencing (snRNA-seq) with genome-wide 5hmC (5-hydroxymethylcytosine) profiling and 5mC (5-methylcytosine) profiling in prefrontal cortex (PFC) of ZIKV-affected male offspring mice, we revealed an overall loss of 5hmC and an increase of 5mC levels in intragenic regions, associated with transcriptional changes in neuropsychiatric disorder-related genes. In contrast to their rapid initiation and inactivation in normal conditions, immediate-early genes (IEGs) remain a sustained upregulation with enriched expression in excitatory neurons, which is coupled with increased 5hmC and decreased 5mC levels of IEGs in ZIKV-affected male offspring. Thus, MIA induces maladaptive methylome remodeling in brain and selectively regulates neuronal activity gene methylation linking to emotional behavioral abnormalities in offspring.


Assuntos
Infecção por Zika virus , Zika virus , Masculino , Animais , Camundongos , Metilação de DNA , Epigenoma , Zika virus/metabolismo , 5-Metilcitosina/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Epigênese Genética
4.
Cancer Res ; 83(12): 2016-2033, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37078793

RESUMO

Cellular components of the tumor microenvironment, including myeloid cells, play important roles in the progression of lung adenocarcinoma (LUAD) and its response to therapy. Here, we characterize the function of the ubiquitin ligases Siah1a/2 in regulating the differentiation and activity of alveolar macrophages (AM) and assess the implication of Siah1a/2 control of AMs for carcinogen-induced LUAD. Macrophage-specific genetic ablation of Siah1a/2 promoted accumulation of AMs with an immature phenotype and increased expression of protumorigenic and pro-inflammatory Stat3 and ß-catenin gene signatures. Administration of urethane to wild-type mice promoted enrichment of immature-like AMs and lung tumor development, which was enhanced by macrophage-specific Siah1a/2 ablation. The profibrotic gene signature seen in Siah1a/2-ablated immature-like macrophages was associated with increased tumor infiltration of CD14+ myeloid cells and poorer survival of patients with LUAD. Single-cell RNA-seq confirmed the presence of a cluster of immature-like AMs expressing a profibrotic signature in lungs of patients with LUAD, a signature enhanced in smokers. These findings identify Siah1a/2 in AMs as gatekeepers of lung cancer development. SIGNIFICANCE: The ubiquitin ligases Siah1a/2 control proinflammatory signaling, differentiation, and profibrotic phenotypes of alveolar macrophages to suppress lung carcinogenesis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Macrófagos Alveolares , Ubiquitina-Proteína Ligases , Animais , Camundongos , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Adenocarcinoma de Pulmão/induzido quimicamente , Neoplasias Pulmonares/induzido quimicamente , Microambiente Tumoral , Ubiquitina-Proteína Ligases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Hum Mol Genet ; 32(8): 1252-1265, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36322143

RESUMO

G4C2 repeat expansion in C9orf72 causes the most common familial frontotemporal dementia and amyotrophic lateral sclerosis (C9FTD/ALS). The pathogenesis includes haploinsufficiency of C9orf72, which forms a protein complex with Smcr8, as well as G4C2 repeat-induced gain of function including toxic dipeptide repeats (DPRs). The key in vivo disease-driving mechanisms and how loss- and gain-of-function interplay remain poorly understood. Here, we identified dysregulation of a lysosome-ribosome biogenesis circuit as an early and key disease mechanism using a physiologically relevant mouse model with combined loss- and gain-of-function across the aging process. C9orf72 deficiency exacerbates FTD/ALS-like pathologies and behaviors in C9ORF72 bacterial artificial chromosome (C9-BAC) mice with G4C2 repeats under endogenous regulatory elements from patients. Single nucleus RNA sequencing (snRNA-seq) and bulk RNA-seq revealed that C9orf72 depletion disrupts lysosomes in neurons and leads to transcriptional dysregulation of ribosomal protein genes, which are likely due to the proteotoxic stress response and resemble ribosomopathy defects. Importantly, ectopic expression of C9orf72 or its partner Smcr8 in C9FTD/ALS mutant mice promotes lysosomal functions and restores ribosome biogenesis gene transcription, resulting in the mitigation of DPR accumulation, neurodegeneration as well as FTD/ALS-like motor and cognitive behaviors. Therefore, we conclude that loss- and gain-of-function crosstalk in C9FTD/ALS converges on neuronal dysregulation of a lysosome-ribosome biogenesis circuit leading to proteotoxicity, neurodegeneration and behavioral defects.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Proteína C9orf72/genética , Ribossomos/metabolismo , Lisossomos/metabolismo , Expansão das Repetições de DNA , Proteínas de Transporte/genética
6.
bioRxiv ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38234778

RESUMO

Glioblastoma (GBM) poses a significant challenge in oncology and stands as the most aggressive form of brain cancer. A primary contributor to its relentless nature is the stem-like cancer cells, called glioblastoma stem cells (GSCs). GSCs have the capacity for self-renewal and tumorigenesis, leading to frequent GBM recurrences and complicating treatment modalities. While natural killer (NK) cells exhibit potential in targeting and eliminating stem-like cancer cells, their efficacy within the GBM microenvironment is limited due to constrained infiltration and function. To address this limitation, novel investigations focusing on boosting NK cell activity against GSCs are imperative. This study presents two streamlined image-based assays assessing NK cell migration and cytotoxicity towards GSCs. It details protocols and explores the strengths and limitations of these methods. These assays could aid in identifying novel targets to enhance NK cell activity towards GSCs, facilitating the development of NK cell-based immunotherapy for improved GBM treatment.

7.
EMBO Rep ; 22(8): e51978, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34232545

RESUMO

Zika virus (ZIKV) infection during pregnancy is linked to various developmental brain disorders. Infants who are asymptomatic at birth might have postnatal neurocognitive complications. However, animal models recapitulating these neurocognitive phenotypes are lacking, and the circuit mechanism underlying behavioral abnormalities is unknown. Here, we show that ZIKV infection during mouse pregnancy induces maternal immune activation (MIA) and leads to autistic-like behaviors including repetitive self-grooming and impaired social memory in offspring. In the medial prefrontal cortex (mPFC), ZIKV-affected offspring mice exhibit excitation and inhibition imbalance and increased cortical activity. This could be explained by dysregulation of inhibitory neurons and synapses, and elevated neural activity input from mPFC-projecting ventral hippocampus (vHIP) neurons. We find structure alterations in the synaptic connections and pattern of vHIP innervation of mPFC neurons, leading to hyperconnectivity of the vHIP-mPFC pathway. Decreasing the activity of mPFC-projecting vHIP neurons with a chemogenetic strategy rescues social memory deficits in ZIKV offspring mice. Our studies reveal a hyperconnectivity of vHIP to mPFC projection driving social memory deficits in mice exposed to maternal inflammation by ZIKV.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Feminino , Hipocampo , Inflamação , Camundongos , Córtex Pré-Frontal , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA