Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39069827

RESUMO

The mitochondrial citrate shuttle, which relies on the solute carrier family 25 member 1 (SLC25A1), plays a pivotal role in transporting citrate from the mitochondria to the cytoplasm. This shuttle supports glycolysis, lipid biosynthesis, and protein acetylation. Previous research has primarily focused on Slc25a1 in pathological models, particularly high-fat diet (HFD)-induced obesity. However, the impact of Slc25a1 inhibition on nutrient metabolism under HFD remains unclear. To address this gap, we used zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus) to evaluate the effects of inhibiting Slc25a1. In zebrafish, we administered Slc25a1-specific inhibitors (CTPI-2) for four weeks, while Nile tilapia received intraperitoneal injections of dsRNA to knockdown slc25a1b for seven days. Inhibition of the mitochondrial citrate shuttle effectively protected zebrafish from HFD-induced obesity, hepatic steatosis, and insulin resistance. Notably, glucose tolerance was unaffected. Inhibition of Slc25a1 altered hepatic protein acetylation patterns, with decreased cytoplasmic acetylation and increased mitochondrial acetylation. Under HFD conditions, Slc25a1 inhibition promoted fatty acid oxidation and reduced hepatic triglyceride accumulation by deacetylating Cpt1a. Additionally, Slc25a1 inhibition triggered acetylation-induced inactivation of Pdhe1α, leading to a reduction in glucose oxidative catabolism. This was accompanied by enhanced glucose uptake and storage in zebrafish livers. Furthermore, Slc25a1 inhibition under HFD conditions activated the SIRT1/PGC1α pathway, promoting mitochondrial proliferation and enhancing oxidative phosphorylation for energy production. Our findings provide new insights into the role of non-histone protein acetylation via the mitochondrial citrate shuttle in the development of hepatic lipid deposition and hyperglycemia caused by HFD.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167442, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39059593

RESUMO

Unlike humans and other mammals, zebrafish demonstrate a remarkable capacity to regenerate their injured hearts throughout life. Mitochondrial fatty acid ß-oxidation (FAO) contributes to major energy demands of the adult hearts under physiological conditions; however, its functions in regulating cardiac regeneration and the underlying mechanisms are not completely understood. Different strategies targeting FAO have yield mixed outcomes. Here, we demonstrated that pharmacological inhibition of mitochondrial FAO with mildronate (MD) caused lipid accumulation in zebrafish larvae and suppressed ventricle regeneration. MD treatment impeded cardiogenic factor reactivation and cardiomyocyte (CM) proliferation, and impaired ventricle regeneration could be rescued by exogenous l-carnitine supplementation. Moreover, compared with the ablated hearts of wild-type fish, ventricle regeneration, cardiogenic factor reactivation and CM proliferation were significantly blocked in the ablated hearts of carnitine palmitoyltransferase-1b (cpt1b) knockout zebrafish. Further experiments suggested that NF-κB signaling and increased inflammation may be involved in the impediment of ventricle regeneration caused by systemic mitochondrial FAO inhibition. Overall, our study demonstrates the essential roles of mitochondrial FAO in zebrafish ventricle regeneration and reaffirms the sophisticated and multifaceted roles of FAO in heart regeneration with regard to different injury models and means of FAO inhibition.


Assuntos
Ácidos Graxos , Ventrículos do Coração , Oxirredução , Regeneração , Peixe-Zebra , Animais , Regeneração/efeitos dos fármacos , Ácidos Graxos/metabolismo , Oxirredução/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Metilidrazinas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Nutr Biochem ; 131: 109678, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38844080

RESUMO

The solute carrier family 25 member 1 (Slc25a1)-dependent mitochondrial citrate shuttle is responsible for exporting citrate from the mitochondria to the cytoplasm for supporting lipid biosynthesis and protein acetylation. Previous studies on Slc25a1 concentrated on pathological models. However, the importance of Slc25a1 in maintaining metabolic homeostasis under normal nutritional conditions remains poorly understood. Here, we investigated the mechanism of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis in male Nile tilapia (Oreochromis niloticus). To achieve the objective, we blocked the mitochondrial citrate shuttle by inhibiting Slc25a1 under normal nutritional conditions. Slc25a1 inhibition was established by feeding Nile tilapia with 250 mg/kg 1,2,3-benzenetricarboxylic acid hydrate for 6 weeks or intraperitoneal injecting them with dsRNA to knockdown slc25a1b for 7 days. The Nile tilapia with Slc25a1 inhibition exhibited an obesity-like phenotype accompanied by fat deposition, liver damage and hyperglycemia. Moreover, Slc25a1 inhibition decreased hepatic citrate-derived acetyl-CoA, but increased hepatic triglyceride levels. Furthermore, Slc25a1 inhibition replenished cytoplasmic acetyl-CoA through enhanced acetate pathway, which led to hepatic triglycerides accumulation. However, acetate-derived acetyl-CoA caused by hepatic Slc25a1 inhibition did not activate de novo lipogenesis, but rather modified protein acetylation. In addition, hepatic Slc25a1 inhibition enhanced fatty acids esterification through acetate-derived acetyl-CoA, which increased Lipin1 acetylation and its protein stability. Collectively, our results illustrate that inhibiting mitochondrial citrate shuttle triggers lipid anabolic remodeling and results in lipid accumulation, indicating the importance of mitochondrial citrate shuttle in maintaining lipid metabolism homeostasis.


Assuntos
Ciclídeos , Ácido Cítrico , Metabolismo dos Lipídeos , Fígado , Triglicerídeos , Animais , Triglicerídeos/metabolismo , Fígado/metabolismo , Masculino , Ciclídeos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Cítrico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Acetilcoenzima A/metabolismo
4.
J Anim Sci Biotechnol ; 15(1): 54, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38582865

RESUMO

BACKGROUND: Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated. RESULTS: A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 300 mg/kg gossypol and 108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model. CONCLUSIONS: The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.

5.
Environ Toxicol Chem ; 43(5): 1062-1074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477699

RESUMO

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.


Assuntos
Estrogênios , Esteroide 17-alfa-Hidroxilase , Vitelogeninas , Peixe-Zebra , Animais , Masculino , Esteroide 17-alfa-Hidroxilase/genética , Vitelogeninas/genética , Estrogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Compostos Benzidrílicos/toxicidade , Estradiol , Fenóis/toxicidade , Feminino , Fluorocarbonos/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo
6.
Fish Physiol Biochem ; 50(3): 1141-1155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401031

RESUMO

Autophagy is a cellular process that involves the fusion of autophagosomes and lysosomes to degrade damaged proteins or organelles. Triglycerides are hydrolyzed by autophagy, releasing fatty acids for energy through mitochondrial fatty acid oxidation (FAO). Inhibited mitochondrial FAO induces autophagy, establishing a crosstalk between lipid catabolism and autophagy. Peroxisome proliferator-activated receptor α (PPARα), a transcription factor, stimulates lipid catabolism genes, including fatty acid transport and mitochondrial FAO, while also inducing autophagy through transcriptional regulation of transcription factor EB (TFEB). Therefore, the study explores whether PPARα regulates autophagy through TFEB transcriptional control or mitochondrial FAO. In aquaculture, addressing liver lipid accumulation in fish is crucial. Investigating the link between lipid catabolism and autophagy is significant for devising lipid-lowering strategies and maintaining fish health. The present study investigated the impact of dietary fenofibrate and L-carnitine on autophagy by activating Pparα and enhancing FAO in Nile tilapia (Oreochromis niloticus), respectively. The dietary fenofibrate and L-carnitine reduced liver lipid content and enhanced ATP production, particularly fenofibrate. FAO enhancement by L-carnitine showed no changes in autophagic protein levels and autophagic flux. Moreover, fenofibrate-activated Pparα promoted the expression and nuclear translocation of Tfeb, upregulating autophagic initiation and lysosomal biogenesis genes. Pparα activation exhibited an increasing trend of LC3II protein at the basal autophagy and cumulative p62 protein trends after autophagy inhibition in zebrafish liver cells. These data show that Pparα activation-induced autophagic flux should be independent of lipid catabolism.


Assuntos
Autofagia , Fenofibrato , Metabolismo dos Lipídeos , PPAR alfa , Animais , PPAR alfa/metabolismo , PPAR alfa/genética , Autofagia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenofibrato/farmacologia , Carnitina/farmacologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ciclídeos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Ácidos Graxos/metabolismo
7.
Zool Res ; 44(5): 954-966, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721105

RESUMO

Hypoxia is a common environmental stress factor in aquatic organisms, which varies among fish species. However, the mechanisms underlying the ability of fish species to tolerate hypoxia are not well known. Here, we showed that hypoxia response in different fish species was affected by lipid catabolism and preference for lipid or carbohydrate energy sources. Activation of biochemical lipid catabolism through peroxisome proliferator-activated receptor alpha (Pparα) or increasing mitochondrial fat oxidation in tilapia decreased tolerance to acute hypoxia by increasing oxygen consumption and oxidative damage and reducing carbohydrate catabolism as an energy source. Conversely, lipid catabolism inhibition by suppressing entry of lipids into mitochondria in tilapia or individually knocking out three key genes of lipid catabolism in zebrafish increased tolerance to acute hypoxia by decreasing oxygen consumption and oxidative damage and promoting carbohydrate catabolism. However, anaerobic glycolysis suppression eliminated lipid catabolism inhibition-promoted hypoxia tolerance in adipose triglyceride lipase (atgl) mutant zebrafish. Using 14 fish species with different trophic levels and taxonomic status, the fish preferentially using lipids for energy were more intolerant to acute hypoxia than those preferentially using carbohydrates. Our study shows that hypoxia tolerance in fish depends on catabolic preference for lipids or carbohydrates, which can be modified by regulating lipid catabolism.


Assuntos
Estresse Oxidativo , Peixe-Zebra , Animais , Hipóxia/veterinária , Carboidratos , Lipídeos
8.
Commun Biol ; 6(1): 944, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714932

RESUMO

The mechanisms of acclimating to a nitrogen-fluctuating environment are necessary for the survival of aquatic cyanobacteria in their natural habitats, but our understanding is still far from complete. Here, the synthesis of phycobiliprotein is confirmed to be much earlier than that of photosystem components during recovery from nitrogen chlorosis and an unknown protein Ssr1698 is discovered to be involved in this synthetic process. The unknown protein is further identified as a c-type heme oxygenase (cHO) in tetrapyrrole biosynthetic pathway and catalyzes the opening of heme ring to form biliverdin IXα, which is required for phycobilin production and ensuing phycobiliprotein synthesis. In addition, the cHO-dependent phycobiliprotein is found to be vital for the growth of cyanobacterial cells during chlorosis and regreening through its nitrogen-storage and light-harvesting functions, respectively. Collectively, the cHO expressed preferentially during recovery from nitrogen chlorosis is identified in photosynthetic organisms and the dual function of this enzyme-dependent phycobiliprotein is proposed to be an important mechanism for acclimation of aquatic cyanobacteria to a nitrogen-fluctuating environment.


Assuntos
Anemia Hipocrômica , Cianobactérias , Humanos , Heme Oxigenase (Desciclizante) , Aclimatação , Nitrogênio , Ficobiliproteínas
9.
J Biol Chem ; 299(10): 105220, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660921

RESUMO

Pharmacological inhibition of mitochondrial fatty acid oxidation (FAO) has been clinically used to alleviate certain metabolic diseases by remodeling cellular metabolism. However, mitochondrial FAO inhibition also leads to mechanistic target of rapamycin complex 1 (mTORC1) activation-related protein synthesis and tissue hypertrophy, but the mechanism remains unclear. Here, by using a mitochondrial FAO inhibitor (mildronate or etomoxir) or knocking out carnitine palmitoyltransferase-1, we revealed that mitochondrial FAO inhibition activated the mTORC1 pathway through general control nondepressible 5-dependent Raptor acetylation. Mitochondrial FAO inhibition significantly promoted glucose catabolism and increased intracellular acetyl-CoA levels. In response to the increased intracellular acetyl-CoA, acetyltransferase general control nondepressible 5 activated mTORC1 by catalyzing Raptor acetylation through direct interaction. Further investigation also screened Raptor deacetylase histone deacetylase class II and identified histone deacetylase 7 as a potential regulator of Raptor. These results provide a possible mechanistic explanation for the mTORC1 activation after mitochondrial FAO inhibition and also bring light to reveal the roles of nutrient metabolic remodeling in regulating protein acetylation by affecting acetyl-CoA production.

10.
Anim Nutr ; 14: 303-314, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37635932

RESUMO

Citrate is an essential substrate for energy metabolism that plays critical roles in regulating glucose and lipid metabolic homeostasis. However, the action of citrate in regulating nutrient metabolism in fish remains poorly understood. Here, we investigated the effects of dietary sodium citrate on growth performance and systematic energy metabolism in juvenile Nile tilapia (Oreochromis niloticus). A total of 270 Nile tilapia (2.81 ± 0.01 g) were randomly divided into three groups (3 replicates per group, 30 fish per replicate) and fed with control diet (35% protein and 6% lipid), 2% and 4% sodium citrate diets, respectively, for 8 weeks. The results showed that sodium citrate exhibited no effect on growth performance (P > 0.05). The whole-body crude protein, serum triglyceride and hepatic glycogen contents were significantly increased in the 4% sodium citrate group (P < 0.05), but not in the 2% sodium citrate group (P > 0.05). The 4% sodium citrate treatment significantly increased the serum glucose and insulin levels at the end of feeding trial and also in the glucose tolerance test (P < 0.05). The 4% sodium citrate significantly enhanced the hepatic phosphofructokinase activity and inhibited the expression of pyruvate dehydrogenase kinase isozyme 2 and phosphor-pyruvate dehydrogenase E1 component subunit alpha proteins (P < 0.05). Additionally, the 4% sodium citrate significantly increased hepatic triglyceride and acetyl-CoA levels, while the expressions of carnitine palmitoyl transferase 1a protein were significantly down-regulated by the 4% sodium citrate (P < 0.05). Besides, the 4% sodium citrate induced crude protein deposition in muscle by activating mTOR signaling and inhibiting AMPK signaling (P < 0.05). Furthermore, the 4% sodium citrate significantly suppressed serum aspartate aminotransferase and alanine aminotransferase activities, along with the lowered expression of pro-inflammatory genes, such as nfκb, tnfα and il8 (P < 0.05). Although the 4% sodium citrate significantly increased phosphor-nuclear factor-kB p65 protein expression (P < 0.05), no significant tissue damage or inflammation occurred. Taken together, dietary supplementation of sodium citrate could exhibit a double-edged effect in Nile tilapia, with the positive aspect in promoting nutrient deposition and the negative aspect in causing hyperglycemia and insulin resistance.

11.
BMC Microbiol ; 23(1): 242, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648978

RESUMO

BACKGROUND: As substitutes for antibiotics, probiotic bacteria protect against digestive infections caused by pathogenic bacteria. Ligilactobacillus salivarius is a species of native lactobacillus found in both humans and animals. Herein, a swine-derived Ligilactobacillus salivarius was isolated and shown to colonize the ileal mucous membrane, thereby promoting nutritional digestion, absorption, and immunity. To evaluate its probiotic role, the entire genome was sequenced, the genetic information was annotated, and the metabolic information was analyzed. RESULTS: The phylogenetic relationship indicated that the bacteria was closer to L. salivarius MT573555.1 and MT585431.1. Functional genes included transporters, membrane proteins, enzymes, heavy metal resistance proteins, and putative proteins; metabolism-related genes were the most abundant. The six types of metabolic pathways secreted by L. salivarius were mainly composed of secretory transmembrane proteins and peptides. The secretory proteins of L. salivarius were digestive enzymes, functional proteins that regulate apoptosis, antibodies, and hormones. Non-targeted metabolomic analysis of L. salivarius metabolites suggested that ceramide, pyrrolidone- 5- carboxylic acid, N2-acetyl-L-ornithine, 2-ethyl-2-hydroxybutyric acid, N-lactoyl-phenylalanine, and 12 others were involved in antioxidation, repair of the cellular membrane, anticonvulsant, hypnosis, and appetite inhibition. Metabolites of clavaminic acid, antibiotic X14889C, and five other types of bacteriocins were identified, namely phenyllactic acid, janthitrem G, 13-demethyl tacrolimus, medinoside E, and tertonasin. The adherence and antioxidation of L. salivarius were also predicted. No virulence genes were found. CONCLUSION: The main probiotic properties of L. salivarius were identified using genomic, metabonomic, and biochemical assays, which are beneficial for porcine feeding. Our results provided deeper insights into the probiotic effects of L. salivarius.


Assuntos
Ligilactobacillus salivarius , Humanos , Animais , Suínos , Filogenia , Genômica , Metabolômica , Antibacterianos , Antioxidantes
12.
Fish Shellfish Immunol ; 140: 108969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488039

RESUMO

In omnivorous fish, the pyruvate dehydrogenase kinases (PDKs)-pyruvate dehydrogenase E1α subunit (PDHE1α) axis is essential in the regulation of carbohydrate oxidative catabolism. Among the existing research, the role of the PDKs-PDHE1α axis in carnivorous fish with poor glucose utilization is unclear. In the present study, we determined the effects of PDK inhibition on the liver glycolipid metabolism of largemouth bass (Micropterus salmoides). DCA is a PDK-specific inhibitor that inhibits PDK by binding the allosteric sites. A total of 160 juvenile largemouth bass were randomly divided into two groups, with four replicates of 20 fish each, fed a control diet and a control diet supplemented with dichloroacetate (DCA) for 8 weeks. The present results showed that DCA supplementation significantly decreased the hepatosomatic index, triglycerides in liver and serum, and total liver lipids of largemouth bass compared with the control group. In addition, compared with the control group, DCA treatment significantly down-regulated gene expression associated with lipogenesis. Furthermore, DCA supplementation significantly decreased the mRNA expression of pdk3a and increased PDHE1α activity. In addition, DCA supplementation improved glucose oxidative catabolism and pyruvate oxidative phosphorylation (OXPHOS) in the liver, as evidenced by low pyruvate content in the liver and up-regulated expressions of glycolysis-related and TCA cycle/OXPHOS-related genes. Moreover, DCA consumption decreased hepatic malondialdehyde (MDA) content, enhanced the activities of superoxide dismutase (SOD), and increased transforming growth factor beta (tgf-ß), glutathione S-transferase (gst), and superoxide dismutase 1 (sod1) gene expression compared with the control diet. This study demonstrated that inhibition of PDKs by DCA promoted glucose utilization, reduced hepatic lipid deposition, and improved oxidative stress in largemouth bass by increasing pyruvate OXPHOS. Our findings contribute to the understanding of the underlying mechanism of the PDKs-PDHE1α axis in glucose metabolism and improve the utilization of dietary carbohydrates in farmed carnivorous fish.


Assuntos
Bass , Glucose , Animais , Glucose/metabolismo , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia , Fosforilação Oxidativa , Estresse Oxidativo , Fígado/metabolismo , Triglicerídeos/metabolismo
13.
J Anim Sci Biotechnol ; 14(1): 86, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37415202

RESUMO

BACKGROUND: Soybean (Glycine max) meal is one of the important protein sources for fish, but the non-starch polysaccharides (NSP) in soybean meal impair the intestinal barrier function. Here we aimed to investigate whether xylanase can alleviate the adverse effects on the gut barrier induced by soybean meal in Nile tilapia and to explore the possible mechanism. RESULTS: Nile tilapia (Oreochromis niloticus) (4.09 ± 0.02 g) were fed with two diets including SM (soybean meal) and SMC (soybean meal + 3,000 U/kg xylanase) for 8 weeks. We characterized the effects of xylanase on the gut barrier, and the transcriptome analysis was performed to investigate the underlying mechanism. Dietary xylanase improved intestinal morphology and decreased the concentration of lipopolysaccharide (LPS) in serum. The results of transcriptome and Western blotting showed that dietary xylanase up-regulated the expression level of mucin2 (MUC2) which may be related to the inhibition of protein kinase RNA-like endoplasmic reticulum kinase (perk)/activating transcription factor 4 (atf4) signaling pathways. Microbiome analysis showed that addition of xylanase in soybean meal altered the intestinal microbiota composition and increased the concentration of butyric acid in the gut. Notably, dietary sodium butyrate was supplemented into the soybean meal diet to feed Nile tilapia, and the data verified that sodium butyrate mirrored the beneficial effects of xylanase. CONCLUSIONS: Collectively, supplementation of xylanase in soybean meal altered the intestinal microbiota composition and increased the content of butyric acid which can repress the perk/atf4 signaling pathway and increase the expression of muc2 to enhance the gut barrier function of Nile tilapia. The present study reveals the mechanism by which xylanase improves the intestinal barrier, and it also provides a theoretical basis for the application of xylanase in aquaculture.

14.
Adv Sci (Weinh) ; 10(25): e2300436, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37407508

RESUMO

N6-methyladenosine (m6 A) modification has been implicated in the progression of obesity and metabolic diseases. However, its impact on beige fat biology is not well understood. Here, via m6 A-sequencing and RNA-sequencing, this work reports that upon beige adipocytes activation, glycolytic genes undergo major events of m6 A modification and transcriptional activation. Genetic ablation of m6 A writer Mettl3 in fat tissues reveals that Mettl3 deficiency in mature beige adipocytes leads to suppressed glycolytic capability and thermogenesis, as well as reduced preadipocytes proliferation via glycolytic product lactate. In addition, specific modulation of Mettl3 in beige fat via AAV delivery demonstrates consistently Mettl3's role in glucose metabolism, thermogenesis, and beige fat hyperplasia. Mechanistically, Mettl3 and m6 A reader Igf2bp2 control mRNA stability of key glycolytic genes in beige adipocytes. Overall, these findings highlight the significance of m6 A on fat biology and systemic energy homeostasis.


Assuntos
Tecido Adiposo Bege , Glicólise , Metilação , Tecido Adiposo Bege/metabolismo , Glicólise/genética , Homeostase/genética , RNA/metabolismo
15.
Anim Nutr ; 14: 56-66, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37252330

RESUMO

Carbohydrates have a protein sparing effect, but long-term feeding of a high-carbohydrate diet (HCD) leads to metabolic disorders due to the limited utilization efficiency of carbohydrates in fish. How to mitigate the negative effects induced by HCD is crucial for the rapid development of aquaculture. Uridine is a pyrimidine nucleoside that plays a vital role in regulating lipid and glucose metabolism, but whether uridine can alleviate metabolic syndromes induced by HCD remains unknown. In this study, a total of 480 Nile tilapia (Oreochromis niloticus) (average initial weight 5.02 ± 0.03 g) were fed with 4 diets, including a control diet (CON), HCD, HCD + 500 mg/kg uridine (HCUL) and HCD + 5,000 mg/kg uridine (HCUH), for 8 weeks. The results showed that addition of uridine decreased hepatic lipid, serum glucose, triglyceride and cholesterol (P < 0.05). Further analysis indicated that higher concentration of uridine activated the sirtuin1 (sirt1)/adenosine 5-monophosphate-activated protein kinase (AMPK) signaling pathway to increase lipid catabolism and glycolysis while decreasing lipogenesis (P < 0.05). Besides, uridine increased the activity of glycogen synthesis-related enzymes (P < 0.05). This study suggested that uridine could alleviate HCD-induced metabolic syndrome by activating the sirt1/AMPK signaling pathway and promoting glycogen synthesis. This finding reveals the function of uridine in fish metabolism and facilitates the development of new additives in aquatic feeds.

16.
Entropy (Basel) ; 25(4)2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37190454

RESUMO

Temporal knowledge graphs (KGs) have recently attracted increasing attention. The temporal KG forecasting task, which plays a crucial role in such applications as event prediction, predicts future links based on historical facts. However, current studies pay scant attention to the following two aspects. First, the interpretability of current models is manifested in providing reasoning paths, which is an essential property of path-based models. However, the comparison of reasoning paths in these models is operated in a black-box fashion. Moreover, contemporary models utilize separate networks to evaluate paths at different hops. Although the network for each hop has the same architecture, each network achieves different parameters for better performance. Different parameters cause identical semantics to have different scores, so models cannot measure identical semantics at different hops equally. Inspired by the observation that reasoning based on multi-hop paths is akin to answering questions step by step, this paper designs an Interpretable Multi-Hop Reasoning (IMR) framework based on consistent basic models for temporal KG forecasting. IMR transforms reasoning based on path searching into stepwise question answering. In addition, IMR develops three indicators according to the characteristics of temporal KGs and reasoning paths: the question matching degree, answer completion level, and path confidence. IMR can uniformly integrate paths of different hops according to the same criteria; IMR can provide the reasoning paths similarly to other interpretable models and further explain the basis for path comparison. We instantiate the framework based on common embedding models such as TransE, RotatE, and ComplEx. While being more explainable, these instantiated models achieve state-of-the-art performance against previous models on four baseline datasets.

17.
Mar Life Sci Technol ; 5(1): 56-74, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37073330

RESUMO

The roles of dietary cholesterol in fish physiology are currently contradictory. The issue reflects the limited studies on the metabolic consequences of cholesterol intake in fish. The present study investigated the metabolic responses to high cholesterol intake in Nile tilapia (Oreochromis niloticus), which were fed with four cholesterol-contained diets (0.8, 1.6, 2.4 and 3.2%) and a control diet for eight weeks. All fish-fed cholesterol diets showed increased body weight, but accumulated cholesterol (the peak level was in the 1.6% cholesterol group). Then, we selected 1.6% cholesterol and control diets for further analysis. The high cholesterol diet impaired liver function and reduced mitochondria number in fish. Furthermore, high cholesterol intake triggered protective adaptation via (1) inhibiting endogenous cholesterol synthesis, (2) elevating the expression of genes related to cholesterol esterification and efflux, and (3) promoting chenodeoxycholic acid synthesis and efflux. Accordingly, high cholesterol intake reshaped the fish gut microbiome by increasing the abundance of Lactobacillus spp. and Mycobacterium spp., both of which are involved in cholesterol and/or bile acids catabolism. Moreover, high cholesterol intake inhibited lipid catabolic activities through mitochondrial ß-oxidation, and lysosome-mediated lipophagy, and depressed insulin signaling sensitivity. Protein catabolism was elevated as a compulsory response to maintain energy homeostasis. Therefore, although high cholesterol intake promoted growth, it led to metabolic disorders in fish. For the first time, this study provides evidence for the systemic metabolic response to high cholesterol intake in fish. This knowledge contributes to an understanding of the metabolic syndromes caused by high cholesterol intake or deposition in fish. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00158-7.

18.
J Agric Food Chem ; 71(12): 4825-4836, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926869

RESUMO

A high-carbohydrate diet (HCD) can induce excessive fat accumulation in fish, and intestinal microbiota are thought to play important roles in host metabolism. Whether and how intestinal bacteria alleviate the HCD-induced metabolic disorders in fish have attracted more attention. Bacillus cereus was isolated from the intestine content of Nile tilapia. The control diet, high-carbohydrate diet (HC), and HC supplemented with B. cereus Su1 (HCS) were used to feed juvenile Nile tilapia for 8 weeks. The results of the present study showed that B. cereus Su1 supplementation decreased the serum glucose, triglycerides (TG), and reduced hepatic lipid accumulation compared with the HC group. The intestinal bacterial composition analysis suggested that HCS elevated bacterial diversity and the enriched bacteria were closely related to bile acid (BA) metabolism. Higher bile salt hydrolase (BSH) activity was found in the HCS group and B-targeted metabolomic analysis revealed that HCS increased BA content in the intestine and liver compared with HC, including unconjugated BAs (CA and CDCA) and conjugated BAs (TCA, GCA, TCDCA, GCDCA, TDCA, and TUDCA). Furthermore, a high-carbohydrate diet supplemented with B. cereus Su1 significantly enhanced the protein expression of the BA receptor farnesoid X receptor in the liver and decreased significantly the expression level of lipid synthesis-related genes and proteins, while it had no significant effect on lipolysis-related genes and proteins. This study found that B. cereus Su1 altered the intestinal microbiota and bile acid content and composition to regulate the lipid metabolism, revealing the function of the crosstalk among probiotics, intestinal microbiota, and BAs in ameliorating lipid accumulation induced by a high-carbohydrate diet in fish.


Assuntos
Bacillus cereus , Ciclídeos , Animais , Bacillus cereus/genética , Ácidos e Sais Biliares/metabolismo , Dieta , Fígado/metabolismo , Triglicerídeos/metabolismo , Carboidratos/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-36906246

RESUMO

Liver health is important to maintain survival and growth of fish. Currently, the role of dietary docosahexaenoic acid (DHA) in improving fish liver health is largely unknown. This study investigated the role of DHA supplementation in fat deposition and liver damage caused by D-galactosamine (D-GalN) and lipopolysaccharides (LPS) in Nile tilapia (Oreochromis niloticus). Four diets were formulated as control diet (Con), Con supplemented with 1 % DHA, 2 % DHA and 4 % DHA diets, respectively. The diets were fed to 25 Nile tilapia (2.0 ± 0.1 g, average initial weight) in triplicates for four weeks. After the four weeks, 20 fish in each treatment were randomly selected and injected with a mixture of 500 mg D-GalN and 10 µL LPS per mL to induce acute liver injury. The results showed that the Nile tilapia fed on DHA diets decreased visceral somatic index, liver lipid content and serum and liver triglyceride concentrations than those fed on the Con diet. Moreover, after D-GalN/LPS injection, the fish fed on DHA diets decreased alanine aminotransferase and aspartate transaminase activities in the serum. The results of liver qPCR and transcriptomics assays together showed that the DHA diets feeding improved liver health by downregulating the expression of the genes related to toll-like receptor 4 (TLR4) signaling pathway, inflammation and apoptosis. This study indicates that DHA supplementation in Nile tilapia alleviates the liver damage caused by D-GalN/LPS through increasing lipid catabolism, decreasing lipogenesis, TLR4 signaling pathway, inflammation, and apoptosis. Our study provides novel knowledge on the role of DHA in improving liver health in cultured aquatic animals for sustainable aquaculture.


Assuntos
Ciclídeos , Animais , Ração Animal/análise , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Galactosamina/toxicidade , Galactosamina/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Receptor 4 Toll-Like/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36690240

RESUMO

Ammonia nitrogen is one of the important environmental factors, and causes negative effects for fish health in ecosystem and aquaculture. The toxic effects and mechanisms of ammonia in fish deserve further investigation. In the present study, we exposed female and male zebrafish (Danio rerio) to ammonia (50 mg/L NH4Cl) with oxygenated (7.5-7.8 mg/L) or non­oxygenated (3.8-4.5 mg/L) water, to identify the combined effects of dissolved oxygen and ammonia on fish with gender difference. The results showed that oxygenated ammonia exposure increased fish mortality, gill secondary lamellas damage and gill tissue spaces, gene expressions of proinflammatory interleukin 1 beta (il-1ß) and apoptotic caspase8 as compared with non­oxygenated ammonia. Besides, oxygenated ammonia elevated plasma ammonia contents, and decreased the discharge of body ammonia through gills by depressing the enzyme activity of Na+/K+-ATPase. Notably, when zebrafish were subjected to ammonia stress, more severe mortality, gill damage and tissue inflammatory response were observed in males than females. This is the first study to clarify the gender-dependent impacts of ammonia toxicity, and the adverse effects of oxygenation on ammonia resistance in zebrafish.


Assuntos
Amônia , Peixe-Zebra , Feminino , Animais , Masculino , Peixe-Zebra/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Oxigênio/metabolismo , Ecossistema , Proteínas de Peixe-Zebra/metabolismo , Brânquias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA