Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(33): 23067-23074, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39134028

RESUMO

A new class of Ru-sulfonamidate precatalysts for sp3 C-H hydroxylation is described along with a versatile process for assembling unique heteroleptic Ru(II) complexes. The latter has enabled structure-performance studies to identify an optimal precatalyst, 2h, bearing one 4,4'-di-tert-butylbipyridine (dtbpy) and one pyridylsulfonamidate ligand. Single-crystal X-ray analysis confirmed the structure and stereochemistry of this adduct. Catalytic hydroxylation reactions are conveniently performed in an aqueous, biphasic solvent mixture with 1 mol % 2h and ceric ammonium nitrate as the terminal oxidant and deliver oxidized products in yields ranging from 37 to 90%. A comparative mechanistic investigation of 2h against a related homoleptic precatalyst, [Ru(dtbpy)2(MeCN)2](OTf)2, convincingly establishes that the former generates one or more surprisingly long-lived active species under the reaction conditions, thus accounting for the high turnover numbers. Structure-performance, kinetics, mass spectrometric, and electrochemical analyses reveal that ligand oxidation is a prerequisite for catalyst activation. Our findings sharply contrast a large body of prior art showing that ligand oxidation is detrimental to catalyst function. We expect these results to stimulate future innovations in C-H oxidation research.

2.
Cell ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39142281

RESUMO

Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.

3.
Cell Chem Biol ; 31(7): 1324-1335.e20, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38729162

RESUMO

The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.


Assuntos
Neurônios , Peixe-Zebra , Animais , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Saxitoxina/farmacologia , Saxitoxina/metabolismo , Saxitoxina/química , Potenciais de Ação/efeitos dos fármacos , Humanos , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/metabolismo , Luz , Camundongos
4.
STAR Protoc ; 5(1): 102792, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133955

RESUMO

Anuran saxiphilins (Sxphs) are "toxin sponge" proteins thought to prevent the lethal effects of small-molecule neurotoxins through sequestration. Here, we present a protocol for the expression, purification, and characterization of Sxphs. We describe steps for using thermofluor, fluorescence polarization, and isothermal titration calorimetry assays that probe Sxph:saxitoxin interactions using a range of sample quantities. These assays are generalizable and can be used for other paralytic shellfish poisoning toxin-binding proteins. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.


Assuntos
Neurotoxinas , Saxitoxina , Saxitoxina/metabolismo , Calorimetria , Polarização de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA