Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602876

RESUMO

Cortical neural dynamics mediate information processing for the cerebral cortex, which is implicated in fundamental biological processes such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes the cortical network into an aberrant state and, if so, whether it can be brought back to a "normal" operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons and selective activation of GABAergic interneurons significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More important, restoring a "normal" range of neural dynamics through attenuation of pain-induced S1 synchronization alleviated pain-like behavior. These results suggest that spontaneous pain pushed the S1 regional network into a synchronized state, whereas reversal of this synchronization alleviated pain.


Assuntos
Córtex Cerebral , Neuralgia , Animais , Camundongos , Interneurônios/fisiologia , Neuralgia/genética , Neuralgia/terapia , Neurônios , Córtex Somatossensorial
2.
Mol Pain ; 19: 17448069221148351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36526437

RESUMO

Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail, consisting of the SSTR2 agonist L-054,264 and the S1PR3 agonist CYM5541, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.


Assuntos
Nociceptores , Silimarina , Camundongos , Animais , Nociceptores/metabolismo , Cálcio/metabolismo , Silimarina/metabolismo , Silimarina/farmacologia , Dor/metabolismo , Células Receptoras Sensoriais/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Gânglios Espinais/metabolismo
3.
J Neurosci ; 41(36): 7546-7560, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34353899

RESUMO

Voltage-gated CaV2.2 calcium channels are expressed in nociceptors at presynaptic terminals, soma, and axons. CaV2.2 channel inhibitors applied to the spinal cord relieve pain in humans and rodents, especially during pathologic pain, but a biological function of nociceptor CaV2.2 channels in processing of nociception, outside presynaptic terminals in the spinal cord, is underappreciated. Here, we demonstrate that functional CaV2.2 channels in peripheral axons innervating skin are required for capsaicin-induced heat hypersensitivity in male and female mice. We show that CaV2.2 channels in TRPV1-nociceptor endings are activated by capsaicin-induced depolarization and contribute to increased intracellular calcium. Capsaicin induces hypersensitivity of both thermal nociceptors and mechanoreceptors, but only heat hypersensitivity depends on peripheral CaV2.2 channel activity, and especially a cell-type-specific CaV2.2 splice isoform. CaV2.2 channels at peripheral nerve endings might be important therapeutic targets to mitigate certain forms of chronic pain.SIGNIFICANCE STATEMENT It is generally assumed that nociceptor termini in the spinal cord dorsal horn are the functionally significant sites of CaV2.2 channel in control of transmitter release and the transmission of sensory information from the periphery to central sites. We show that peripheral CaV2.2 channels are essential for the classic heat hypersensitivity response to develop in skin following capsaicin exposure. This function of CaV2.2 is highly selective for heat, but not mechanical hypersensitivity induced by capsaicin exposure, and is not a property of closely related CaV2.1 channels. Our findings suggest that interrupting CaV2.2-dependent calcium entry in skin might reduce heat hypersensitivity that develops after noxious heat exposure and may limit the degree of heat hypersensitivity associated with certain other forms of pain.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cálcio/metabolismo , Hiperalgesia/metabolismo , Neurônios/fisiologia , Nociceptores/fisiologia , Terminações Pré-Sinápticas/metabolismo , Pele/inervação , Corno Dorsal da Medula Espinal/metabolismo , Animais , Temperatura Alta , Camundongos , Nociceptividade/fisiologia , Estimulação Física , Pele/metabolismo , Transmissão Sináptica/fisiologia
4.
Nat Commun ; 12(1): 4744, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362895

RESUMO

Human induced pluripotent stem cells (iPSC) hold promise for modeling diseases in individual human genetic backgrounds and thus for developing precision medicine. Here, we generate sensorimotor organoids containing physiologically functional neuromuscular junctions (NMJs) and apply the model to different subgroups of amyotrophic lateral sclerosis (ALS). Using a range of molecular, genomic, and physiological techniques, we identify and characterize motor neurons and skeletal muscle, along with sensory neurons, astrocytes, microglia, and vasculature. Organoid cultures derived from multiple human iPSC lines generated from individuals with ALS and isogenic lines edited to harbor familial ALS mutations show impairment at the level of the NMJ, as detected by both contraction and immunocytochemical measurements. The physiological resolution of the human NMJ synapse, combined with the generation of major cellular cohorts exerting autonomous and non-cell autonomous effects in motor and sensory diseases, may prove valuable to understand the pathophysiological mechanisms of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Junção Neuromuscular/metabolismo , Organoides/fisiologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Astrócitos , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Neurônios Motores , Células Musculares , Músculo Esquelético , Mutação , Organoides/patologia , Células-Tronco
5.
Cell Rep Methods ; 1(1)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34318289

RESUMO

High-throughput physiological assays lose single-cell resolution, precluding subtype-specific analyses of activation mechanism and drug effects. We demonstrate APPOINT (automated physiological phenotyping of individual neuronal types), a physiological assay platform combining calcium imaging, robotic liquid handling, and automated analysis to generate physiological activation profiles of single neurons at large scale. Using unbiased techniques, we quantify responses to sequential stimuli, enabling subgroup identification by physiology and probing of distinct mechanisms of neuronal activation within subgroups. Using APPOINT, we quantify primary sensory neuron activation by metabotropic receptor agonists and identify potential contributors to pain signaling. We expand the role of neuroimmune interactions by showing that human serum directly activates sensory neurons, elucidating a new potential pain mechanism. Finally, we apply APPOINT to develop a high-throughput, all-optical approach for quantification of activation threshold and pharmacologically validate contributions of ion channel families to optical activation.


Assuntos
Dor , Células Receptoras Sensoriais , Humanos , Transdução de Sinais , Ensaios de Triagem em Larga Escala
6.
Ann Clin Transl Neurol ; 8(7): 1508-1514, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34053190

RESUMO

Schwannomas are benign neoplasms that can cause gain- and loss-of-function neurological phenotypes, including severe, intractable pain. To investigate the molecular mechanisms underlying schwannoma-associated pain we compared the RNA sequencing profile of painful and non-painful schwannomas from NF2 patients. Distinct segregation of painful and non-painful tumors by gene expression patterns was observed. Differential expression analysis showed the upregulation of fibroblast growth factor 7 (FGF7) in painful schwannomas. Behavioral support for this finding was observed using a xenograft human NF2-schwannoma model in nude mice. In this model, over-expression of FGF7 in intra-sciatically implanted NF2 tumor cells generated pain behavior compared with controls.


Assuntos
Fator 7 de Crescimento de Fibroblastos/genética , Neurilemoma/genética , Neurofibromatose 2/genética , Dor/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Animais , Linhagem Celular Tumoral , Feminino , Fator 7 de Crescimento de Fibroblastos/biossíntese , Humanos , Masculino , Camundongos , Camundongos Nus , Neurilemoma/metabolismo , Neurilemoma/patologia , Neurofibromatose 2/metabolismo , Neurofibromatose 2/patologia , Dor/metabolismo , Dor/patologia , Neuropatia Ciática/genética , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Sci Rep ; 9(1): 10835, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346219

RESUMO

Directed differentiation of human pluripotent stem cells (hPSCs) has enabled the generation of specific neuronal subtypes that approximate the intended primary mammalian cells on both the RNA and protein levels. These cells offer unique opportunities, including insights into mechanistic understanding of the early driving events in neurodegenerative disease, replacement of degenerating cell populations, and compound identification and evaluation in the context of precision medicine. However, whether the derived neurons indeed recapitulate the physiological features of the desired bona fide neuronal subgroups remains an unanswered question and one important for validating stem cell models as accurate functional representations of the primary cell types. Here, we purified both hPSC-derived and primary mouse spinal motor neurons in parallel and used extracellular multi-electrode array (MEA) recording to compare the pharmacological sensitivity of neuronal excitability and network function. We observed similar effects for most receptor and channel agonists and antagonists, supporting the consistency between human PSC-derived and mouse primary spinal motor neuron models from a physiological perspective.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/fisiologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Humanos , Camundongos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Neurogênese/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA