RESUMO
Introduction: One way to improve exercise performance and protect heart health is the extended synchronization of the stepping with the diastolic phase of the cardiac cycle. Cardiac-locomotor coupling (CLC) happens when the step rate (SR) equals the heart rate (HR). The extent of CLC in daily life is unknown. This study aims to analyze spontaneous occurrences of CLC during daily activities. Methods: A retrospective analysis of daily life recordings from a wrist-worn sensor was undertaken (PMData, N = 16, 5 months duration). The deviation between HR and SR was used to define CLC (deviation ≤ 1%) and weak CLC (1%< deviation ≤ 10%). The occurrence and the probability of CLC during everyday life were computed from the recordings. The CLC occurrences were stratified depending on the duration and intensity of the physical activity. Finally, a Monte Carlo simulation was run to evaluate the probability of random occurrences of CLC vs. the observed recordings. Results: Participants couple for 5% and weakly couple for 35% of the observational period. The ratio of 1:1 between HR and SR is the dominating occurrence across the study population and this overrepresentation is significant. CLC occurs mostly for long activities. The extent of CLC for various intensities of activity is subject-dependent. The results suggest that CLC is feasible for most people. Conclusions: CLC occurs spontaneously during unsupervised daily activity in everyone in our cohort, which suggests a mechanistic interaction between the cardiac and the locomotor systems. This interaction should be investigated for medical rehabilitation and sports applications in the future.
RESUMO
PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.
Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , AlgoritmosRESUMO
The field of durable mechanical circulatory support (MCS) has undergone an incredible evolution over the past few decades, resulting in significant improvements in longevity and quality of life for patients with advanced heart failure. Despite these successes, substantial opportunities for further improvements remain, including in pump design and ancillary technology, perioperative and postoperative management, and the overall patient experience. Ideally, durable MCS devices would be fully implantable, automatically controlled, and minimize the need for anticoagulation. Reliable and long-term total artificial hearts for biventricular support would be available; and surgical, perioperative, and postoperative management would be informed by the individual patient phenotype along with computational simulations. In this review, we summarize emerging technological innovations in these areas, focusing primarily on innovations in late preclinical or early clinical phases of study. We highlight important considerations that the MCS community of clinicians, engineers, industry partners, and venture capital investors should consider to sustain the evolution of the field.
Assuntos
Insuficiência Cardíaca , Coração Artificial , Coração Auxiliar , Humanos , Insuficiência Cardíaca/cirurgia , Invenções , Qualidade de VidaRESUMO
Blood pressure gradient ( Δ P ) across an aortic coarctation (CoA) is an important measurement to diagnose CoA severity and gauge treatment efficacy. Invasive cardiac catheterization is currently the gold-standard method for measuring blood pressure. The objective of this study was to evaluate the accuracy of Δ P estimates derived non-invasively using patient-specific 0D and 3D deformable wall simulations. Medical imaging and routine clinical measurements were used to create patient-specific models of patients with CoA (N = 17). 0D simulations were performed first and used to tune boundary conditions and initialize 3D simulations. Δ P across the CoA estimated using both 0D and 3D simulations were compared to invasive catheter-based pressure measurements for validation. The 0D simulations were extremely efficient ( â¼ 15 s computation time) compared to 3D simulations ( â¼ 30 h computation time on a cluster). However, the 0D Δ P estimates, unsurprisingly, had larger mean errors when compared to catheterization than 3D estimates (12.1 ± 9.9 mmHg vs 5.3 ± 5.4 mmHg). In particular, the 0D model performance degraded in cases where the CoA was adjacent to a bifurcation. The 0D model classified patients with severe CoA requiring intervention (defined as Δ P ≥ 20 mmHg) with 76% accuracy and 3D simulations improved this to 88%. Overall, a combined approach, using 0D models to efficiently tune and launch 3D models, offers the best combination of speed and accuracy for non-invasive classification of CoA severity.
Assuntos
Coartação Aórtica , Humanos , Coartação Aórtica/diagnóstico por imagem , Pressão Sanguínea , Angiografia por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo , Simulação por ComputadorRESUMO
Purpose: Blood pressure gradient (ΔP) across an aortic coarctation (CoA) is an important measurement to diagnose CoA severity and gauge treatment efficacy. Invasive cardiac catheterization is currently the gold-standard method for measuring blood pressure. The objective of this study was to evaluate the accuracy of ΔP estimates derived non-invasively using patient-specific 0D and 3D deformable wall simulations. Methods: Medical imaging and routine clinical measurements were used to create patient-specific models of patients with CoA (N=17). 0D simulations were performed first and used to tune boundary conditions and initialize 3D simulations. ΔP across the CoA estimated using both 0D and 3D simulations were compared to invasive catheter-based pressure measurements for validation. Results: The 0D simulations were extremely efficient (~15 secs computation time) compared to 3D simulations (~30 hrs computation time on a cluster). However, the 0D ΔP estimates, unsurprisingly, had larger mean errors when compared to catheterization than 3D estimates (12.1 ± 9.9 mmHg vs 5.3 ± 5.4 mmHg). In particular, the 0D model performance degraded in cases where the CoA was adjacent to a bifurcation. The 0D model classified patients with severe CoA requiring intervention (defined as ΔP≥20 mmHg) with 76% accuracy and 3D simulations improved this to 88%. Conclusion: Overall, a combined approach, using 0D models to efficiently tune and launch 3D models, offers the best combination of speed and accuracy for non-invasive classification of CoA severity.
RESUMO
Artificial muscles enable the design of soft implantable devices which are poised to transform the way we mechanically support the heart today. Heart failure is a prevalent and deadly disease, which is treated with the implantation of rotary blood pumps as the only alternative to heart transplantation. The clinically used mechanical devices are associated with severe adverse events, which are reflected here in a comprehensive list of critical requirements for soft active devices of the future: low power, no blood contact, pulsatile support, physiological responsiveness, high cycle life, and less-invasive implantation. In this review, prior art in artificial muscles for their applicability in the short and long term is investigated and critically evaluated. The main challenges regarding the effectiveness, controllability, and implantability of recently proposed actuators are highlighted and the future perspectives for attachment, physiological responsiveness, durability, and biodegradability as well as equitable design considerations are explored.
RESUMO
This work presents a modular approach to the development of strain sensors for large deformations. The proposed method separates the extension and signal transduction mechanisms using a soft, elastomeric transmission and a high-sensitivity microelectromechanical system (MEMS) transducer. By separating the transmission and transduction, they can be optimized independently for application-specific mechanical and electrical performance. This work investigates the potential of this approach for human health monitoring as an implantable cardiac strain sensor for measuring global longitudinal strain (GLS). The durability of the sensor was evaluated by conducting cyclic loading tests over one million cycles, and the results showed negligible drift. To account for hysteresis and frequency-dependent effects, a lumped-parameter model was developed to represent the viscoelastic behavior of the sensor. Multiple model orders were considered and compared using validation and test data sets that mimic physiologically relevant dynamics. Results support the choice of a second-order model, which reduces error by 73% compared to a linear calibration. In addition, we evaluated the suitability of this sensor for the proposed application by demonstrating its ability to operate on compliant, curved surfaces. The effects of friction and boundary conditions are also empirically assessed and discussed.
Assuntos
Eletricidade , Deformação Longitudinal Global , Humanos , Calibragem , Fricção , CoraçãoRESUMO
Doppler echocardiography plays a central role in the assessment of pulmonary hypertension (PAH). We aim to improve quality assessment of systolic pulmonary arterial pressure (SPAP) by applying a cubic polynomial interpolation to digitized tricuspid regurgitation (TR) waveforms. Patients with PAH and advanced lung disease were divided into three cohorts: a derivation cohort (n = 44), a validation cohort (n = 71), an outlier cohort (n = 26), and a non-PAH cohort (n = 44). We digitized TR waveforms and analyzed normalized duration, skewness, kurtosis, and first and second derivatives of pressure. Cubic polynomial interpolation was applied to three physiology-driven phases: the isovolumic phase, ejection phase, and "shoulder" point phase. Coefficients of determination and a Bland-Altman analysis was used to assess bias between methods. The cubic polynomial interpolation of the TR waveform correlated strongly with expert read right ventricular systolic pressure (RVSP) with R 2 > 0.910 in the validation cohort. The biases when compared to invasive SPAP measured within 24 h were 6.03 [4.33; 7.73], -2.94 [1.47; 4.41], and -3.11 [-4.52; -1.71] mmHg, for isovolumic, ejection, and shoulder point interpolations, respectively. In the outlier cohort with more than 30% difference between echocardiographic estimates and invasive SPAP, cubic polynomial interpolation significantly reduced underestimation of RVSP. Cubic polynomial interpolation of the TR waveform based on isovolumic or early ejection phase may improve RVSP estimates.
RESUMO
Despite being responsible for half of heart failure-related hospitalizations, heart failure with preserved ejection fraction (HFpEF) has limited evidence-based treatment options. Currently, a substantial clinical issue is that the disease etiology is very heterogenous with no patient-specific treatment options. Modeling can provide a framework for evaluating alternative treatment strategies. Counterpulsation strategies have the capacity to improve left ventricular diastolic filling by reducing systolic blood pressure and augmenting the diastolic pressure that drives coronary perfusion. Here, we propose a framework for testing the effectiveness of a soft robotic extra-aortic counterpulsation strategy using a patient-specific closed-loop hemodynamic lumped parameter model of a patient with HFpEF. The soft robotic device prototype was characterized experimentally in a physiologically pressurized (50-150 mmHg) soft silicone vessel and modeled as a combination of a pressure source and a capacitance. The patient-specific model was created using open-source software and validated against hemodynamics obtained by imaging of a patient (male, 87 years, HR = 60 bpm) with HFpEF. The impact of actuation timing on the flows and pressures as well as systolic function was analyzed. Good agreement between the patient-specific model and patient data was achieved with relative errors below 5% in all categories except for the diastolic aortic root pressure and the end systolic volume. The most effective reduction in systolic pressure compared to baseline (147 vs. 141 mmHg) was achieved when actuating 350 ms before systole. In this case, flow splits were preserved, and cardiac output was increased (5.17 vs. 5.34 L/min), resulting in increased blood flow to the coronaries (0.15 vs. 0.16 L/min). Both arterial elastance (0.77 vs. 0.74 mmHg/mL) and stroke work (11.8 vs. 10.6 kJ) were decreased compared to baseline, however left atrial pressure increased (11.2 vs. 11.5 mmHg). A higher actuation pressure is associated with higher systolic pressure reduction and slightly higher coronary flow. The soft robotic device prototype achieves reduced systolic pressure, reduced stroke work, slightly increased coronary perfusion, but increased left atrial pressures in HFpEF patients. In future work, the framework could include additional physiological mechanisms, a larger patient cohort with HFpEF, and testing against clinically used devices.
RESUMO
OBJECTIVE: Ventricular assist devices (VADs) are implanted in patients suffering from end-stage heart failure to sustain the blood circulation. Real-time volume measurement could be a valuable tool to monitor patients and enable physiological control strategies to provide individualized therapy. However, volume measurement using one sensor modality requires re-calibration in the critical time post VAD implantation. METHODS: To overcome this limitation, we have integrated ultrasound and impedance volume measurement techniques into a cannula of an apical VAD. We tested both modalities across a volume range from 140-420 mL using two differently sized and shaped biventricular silicon heart phantoms, which were subjected to physiological pressures in an in-vitro test bench. We compared results from standard calibrated measurements with calculations found by a quadratic optimization for the single modality and their combination (dual-modality) and validated the results using twofold cross-validation. RESULTS: The dual-modality approach resulted in most favorable limits of agreement (LOA) of -0.83 ± 1.54% compared to -13.88 ± 5.90% for ultrasound and -43.45 ± 10.28% for electric impedance, separately. CONCLUSION: The results of the dual-modality approach were as accurate as the standard calibrated measurement and valid over a large range of volumes (140-420 mL). In this in-vitro study, we show how a dual-modality ventricular volume measurement of ultrasound and electric impedance increases the robustness and renders calibration obsolete. SIGNIFICANCE: Ventricular volumes could be measured accurately in the critical period post VAD implantation despite ventricular remodeling.
Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Coração , HumanosRESUMO
Females have increased risk of right-ventricular failure (RVF) and 3 month mortality after left-ventricular assist device (LVAD) implantation. In this translational study, we tested the hypothesis that sex differences in outcomes are driven by pump-induced LV size-volume mismatch, due to a negative impact on interventricular septal (IVS) interdependence. Adult continuous-flow LVAD recipients from the International Society For Heart And Lung Transplantation Mechanically Assisted Circulatory Support registry (n = 15,498) were studied to determine association of female sex with outcomes of 3 month mortality and RVF. Female sex was associated with smaller preimplant left-ventricular end-diastolic diameter (6.5 vs. 6.9 cm, p < 0.001), increased 3 month mortality (odds ratio [OR]: 1.42, p < 0.001) and RVF (OR: 1.18, p = 0.005). Smaller left-ventricular end-diastolic diameter was associated with worse outcomes after LVAD implantation (OR for mortality: 1.20, p < 0.001; RVF: 1.09, p < 0.001), and attenuated the association of female sex with these outcomes. In test bench heart phantoms (n = 4), the IVSs of smaller hearts demonstrated abnormal leftward shift earlier than larger hearts (volume change at IVS shift: 40 [95% confidence interval: 30-52] vs. 50 [95% confidence interval: 48-69] ml). Smaller LV size partially mediates worse post-LVAD outcomes for female patients, due to lower volume thresholds for adverse IVS shifting.
Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Disfunção Ventricular Direita , Adulto , Feminino , Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Humanos , Masculino , Razão de Chances , Sistema de Registros , Estudos RetrospectivosRESUMO
BACKGROUND: Clinical management of boys with Duchenne muscular dystrophy (DMD) relies on in-depth understanding of cardiac involvement, but right ventricular (RV) structural and functional remodeling remains understudied. PURPOSE: To evaluate several analysis methods and identify the most reliable one to measure RV pre- and postcontrast T1 (RV-T1) and to characterize myocardial remodeling in the RV of boys with DMD. STUDY TYPE: Prospective. POPULATION: Boys with DMD (N = 27) and age-/sex-matched healthy controls (N = 17) from two sites. FIELD STRENGTH/SEQUENCE: 3.0 T using balanced steady state free precession, motion-corrected phase sensitive inversion recovery and modified Look-Locker inversion recovery sequences. ASSESSMENT: Biventricular mass (Mi), end-diastolic volume (EDVi) and ejection fraction (EF) assessment, tricuspid annular excursion (TAE), late gadolinium enhancement (LGE), pre- and postcontrast myocardial T1 maps. The RV-T1 reliability was assessed by three observers in four different RV regions of interest (ROI) using intraclass correlation (ICC). STATISTICAL TESTS: The Wilcoxon rank sum test was used to compare RV-T1 differences between DMD boys with negative LGE(-) or positive LGE(+) and healthy controls. Additionally, correlation of precontrast RV-T1 with functional measures was performed. A P-value <0.05 was considered statistically significant. RESULTS: A 1-pixel thick RV circumferential ROI proved most reliable (ICC > 0.91) for assessing RV-T1. Precontrast RV-T1 was significantly higher in boys with DMD compared to controls. Both LGE(-) and LGE(+) boys had significantly elevated precontrast RV-T1 compared to controls (1543 [1489-1597] msec and 1550 [1402-1699] msec vs. 1436 [1399-1473] msec, respectively). Compared to healthy controls, boys with DMD had preserved RVEF (51.8 [9.9]% vs. 54.2 [7.2]%, P = 0.31) and significantly reduced RVMi (29.8 [9.7] g vs. 48.0 [15.7] g), RVEDVi (69.8 [29.7] mL/m2 vs. 89.1 [21.9] mL/m2 ), and TAE (22.0 [3.2] cm vs. 26.0 [4.7] cm). Significant correlations were found between precontrast RV-T1 and RVEF (ß = -0.48%/msec) and between LV-T1 and LVEF (ß = -0.51%/msec). DATA CONCLUSION: Precontrast RV-T1 is elevated in boys with DMD compared to healthy controls and is negatively correlated with RVEF. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Assuntos
Distrofia Muscular de Duchenne , Função Ventricular Direita , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Masculino , Distrofia Muscular de Duchenne/diagnóstico por imagem , Miocárdio , Estudos Prospectivos , Reprodutibilidade dos Testes , Volume SistólicoRESUMO
Left ventricular end-diastolic volume (EDV) is an important parameter for monitoring patients with left ventricular assist devices (LVADs) and might be useful for automatic LVAD work adaptation. However, continuous information on the EDV is unavailable to date. The depolarization amplitude (DA) of the noncontact intracardiac electromyogram (iEMG) is physically related to the EDV. Here, we show how a left ventricular (LV) volume sensor based on the iEMG might provide beat-wise EDV estimates. The study was performed in six pigs while undergoing a series of controlled changes in hemodynamic states. The LV volume sensor consisted of four conventional pacemaker electrodes measuring the far-field iEMG inside the LV blood pool, using a novel unipolar amplifier. Simultaneously, noninvasive measurements of EDV and hematocrit were recorded. The proposed EDV predictor was tested for statistical significance using a mixed-effect model and associated confidence intervals. A statistically significant (p = 3e-07) negative correlation was confirmed between the DA of the iEMG and the EDV as measured by electric impedance at a slope of -0.069 (-0.089, -0.049) mV/mL. The DA was slightly decreased by increased hematocrit (p = 0.039) and moderately decreased with the opening of the thorax (p = 0.003). The DA of the iEMG proved to be a significant, independent predictor of EDV. The proposed LV volume sensor is simple to integrate into the inflow cannula of an LVAD and thus has the potential to inform the clinician about the state of LV volume in real time and to automatically control the LVAD.
Assuntos
Ventrículos do Coração , Coração Auxiliar , Animais , Eletromiografia , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Volume Sistólico , Suínos , Função Ventricular EsquerdaRESUMO
Aortic wall stiffening is a predictive marker for morbidity in hypertensive patients. Arterial pulse wave velocity (PWV) correlates with the level of stiffness and can be derived using non-invasive 4D-flow magnetic resonance imaging (MRI). The objectives of this study were twofold: to develop subject-specific thoracic aorta models embedded into an MRI-compatible flow circuit operating under controlled physiological conditions; and to evaluate how a range of aortic wall stiffness impacts 4D-flow-based quantification of hemodynamics, particularly PWV. Three aorta models were 3D-printed using a novel photopolymer material at two compliant and one nearly rigid stiffnesses and characterized via tensile testing. Luminal pressure and 4D-flow MRI data were acquired for each model and cross-sectional net flow, peak velocities, and PWV were measured. In addition, the confounding effect of temporal resolution on all metrics was evaluated. Stiffer models resulted in increased systolic pressures (112, 116, and 133 mmHg), variations in velocity patterns, and increased peak velocities, peak flow rate, and PWV (5.8-7.3 m/s). Lower temporal resolution (20 ms down to 62.5 ms per image frame) impacted estimates of peak velocity and PWV (7.31 down to 4.77 m/s). Using compliant aorta models is essential to produce realistic flow dynamics and conditions that recapitulated in vivo hemodynamics.
Assuntos
Aorta Torácica , Hemodinâmica , Modelos Cardiovasculares , Fluxo Sanguíneo Regional , Rigidez Vascular , Algoritmos , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Velocidade do Fluxo Sanguíneo , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Pressão , Resistência à TraçãoRESUMO
Cardiothoracic open-heart surgery has revolutionized the treatment of cardiovascular disease, the leading cause of death worldwide. After the surgery, hemodynamic and volume management can be complicated, for example in case of vasoplegia after endocarditis. Timely treatment is crucial for outcomes. Currently, treatment decisions are made based on heart volume, which needs to be measured manually by the clinician each time using ultrasound. Alternatively, implantable sensors offer a real-time window into the dynamic function of our body. Here it is shown that a soft flexible sensor, made with biocompatible materials, implanted on the surface of the heart, can provide continuous information of the heart volume after surgery. The sensor works robustly for a period of two days on a tensile machine. The accuracy of measuring heart volume is improved compared to the clinical gold standard in vivo, with an error of 7.1 mL for the strain sensor versus impedance and 14.0 mL versus ultrasound. Implanting such a sensor would provide essential, continuous information on heart volume in the critical time following the surgery, allowing early identification of complications, facilitating treatment, and hence potentially improving patient outcome.
Assuntos
Volume Cardíaco , Próteses e Implantes , Materiais Biocompatíveis , Humanos , Monitorização FisiológicaRESUMO
The implantation of left ventricular assist devices (LVADs) is often complicated by arrhythmias and right ventricular failure (RVF). Today, the pump speed is titrated to optimize device support using single observations of interventricular septum (IVS) positioning with echocardiographic ultrasound (US). The study demonstrates the applicability of three integrated US transducers in the LVAD cannula to monitor IVS positioning continuously and robustly in real time. In vitro, the predictor of the IVS shift shows an overall prediction error for all volume states of less than 20% and provides a continuous assessment for 99% of cases in four differently sized heart phantoms. The prediction of IVS shift depending on the cannula position is robust for azimuthal and polar deviations of ± 20° and ± 8°, respectively. This intracardiac US concept results in a viable predictor for IVS positioning and represents a promising approach to continuously monitor the IVS and ventricular loading in LVAD patients. Graphical abstract.
Assuntos
Ecocardiografia/instrumentação , Coração Auxiliar , Transdutores , Função Ventricular Esquerda , Septo Interventricular/diagnóstico por imagem , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Movimentos dos Órgãos , Imagens de Fantasmas , Valor Preditivo dos Testes , Desenho de Prótese , Septo Interventricular/fisiologiaRESUMO
Ventricular assist devices (VADs) are an established treatment option for heart failure (HF). However, the devices are often plagued by material-related hemocompatibility issues. In contrast to continuous flow VADs with high shear stresses, pulsatile VADs (pVADs) offer the potential for an endothelial cell coating that promises to prevent many adverse events caused by an insufficient hemocompatibility. However, their size and weight often precludes their intracorporeal implantation. A reduction of the pump body size and weight of the pump could be achieved by an increase in the stroke frequency while maintaining a similar cardiac output. We present a new pVAD system consisting of a pump and an actuator specifically designed for actuation frequencies of up to 240 bpm. In vitro and in vivo results of the short-term reaction of the cardiovascular system show no significant changes in left ventricular and aortic pressure between actuation frequencies from 60 to 240 bpm. The aortic pulsatility increases when the actuation frequency is raised while the heart rate remains unaffected in vivo. These results lead us to the conclusion that the cardiovascular system tolerates short-term increases of the pVAD stroke frequencies.
Assuntos
Pressão Arterial , Frequência Cardíaca , Coração Auxiliar , Função Ventricular , Animais , Aorta/fisiologia , Feminino , Insuficiência Cardíaca/terapia , Humanos , Desenho de Prótese , Implantação de Prótese , Fluxo Pulsátil , OvinosRESUMO
Future left ventricular assist devices (LVADs) are expected to respond to the physiologic need of patients; however, they still lack reliable pressure or volume sensors for feedback control. In the clinic, echocardiography systems are routinely used to measure left ventricular (LV) volume. Until now, echocardiography in this form was never integrated in LVADs due to its computational complexity. The aim of this study was to demonstrate the applicability of a simplified ultrasonic sensor to fit an LVAD cannula and to show the achievable accuracy in vitro. Our approach requires only two ultrasonic transducers because we estimated the LV volume with the LV end-diastolic diameter commonly used in clinical assessments. In order to optimize the accuracy, we assessed the optimal design parameters considering over 50 orientations of the two ultrasonic transducers. A test bench was equipped with five talcum-infused silicone heart phantoms, in which the intra-ventricular surface replicated papillary muscles and trabeculae carnae. The end-diastolic LV filling volumes of the five heart phantoms ranged from 180 to 480 mL. This reference volume was altered by ±40 mL with a syringe pump. Based on the calibrated measurements acquired by the two ultrasonic transducers, the LV volume was estimated well. However, the accuracies obtained are strongly dependent on the choice of the design parameters. Orientations toward the septum perform better, as they interfere less with the papillary muscles. The optimized design is valid for all hearts. Considering this, the Bland-Altman analysis reports the LV volume accuracy as a bias of ±10% and limits of agreement of 0%-40% in all but the smallest heart. The simplicity of traditional echocardiography systems was reduced by two orders of magnitude in technical complexity, while achieving a comparable accuracy to 2D echocardiography requiring a calibration of absolute volume only. Hence, our approach exploits the established benefits of echocardiography and makes them applicable as an LV volume sensor for LVADs.
Assuntos
Ventrículos do Coração/anatomia & histologia , Coração Auxiliar , Coração/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Diástole , Ecocardiografia , Ecocardiografia Tridimensional , Ventrículos do Coração/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Tamanho do Órgão , Impressão Tridimensional , Volume Sistólico , Ultrassom , Função VentricularRESUMO
PURPOSE: Less invasive left ventricular assist device implantation became feasible with the development of smaller devices. This study evaluated a sutureless aortic anastomosis device to facilitate the implant procedure. DESCRIPTION: The novel anastomotic device deploys and anchors an acute-angled stent in the aortic wall to create a sutureless outflow graft anastomosis in the ascending aorta. Four aortic anastomoses were performed on the beating hearts of two pigs without cross-clamping or cardiopulmonary bypass. EVALUATION: The procedure was fast and simple. The time of anastomosis averaged 8.1 minutes, with merely oral instructions to the operating surgeon. The design of the stent allowed the outflow graft to be implanted with the intended angulation of 45 degrees. CONCLUSIONS: This proof-of-concept study demonstrates the feasibility and short-term success of the proposed sutureless anastomotic device. Further preclinical studies are necessary to evaluate long-term durability of the anastomosis.
Assuntos
Aorta/cirurgia , Implante de Prótese Vascular , Prótese Vascular , Stents , Técnicas de Sutura , Anastomose Cirúrgica , Animais , Desenho de Prótese , SuínosRESUMO
Various physiological controllers for left ventricular assist devices (LVADs) have been developed to prevent flow conditions that may lead to left ventricular (LV) suction and overload. In the current study, we selected and implemented six of the most promising physiological controllers presented in literature. We tuned the controllers for the same objectives by using the loop-shaping method from control theory. The in vitro experiments were derived from literature and included different preload, afterload, and contractility variations. All experiments were repeated with an increased or decreased contractility from the baseline pathological circulation and with simulated sensor drift. The controller performances were compared with an LVAD operated at constant speed (CS) and a physiological circulation. During preload variations, all controllers resulted in a pump flow change that resembled the cardiac output response of the physiological circulation. For afterload variations, the response varied among the controllers, whereas some of them presented a high sensitivity to contractility or sensor drift, leading to LV suction and overload. In such cases, the need for recalibration of the controllers or the sensor is indicated. Preload-based physiological controllers showed their clinical significance by outperforming the CS operation and promise many benefits for the LVAD therapy. However, their clinical implementation in the near future for long-term use is highly dependent on the sensor technology and its reliability.