Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 53(4): 369-379, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956252

RESUMO

Increasing evidence has indicated that glutaredoxin 1 (GRX1) is a potent antioxidant protein that promotes cell survival under conditions of oxidative stress. Oxidative stress-induced neuronal injury contributes to cerebral ischemia/reperfusion injury. However, the role of GRX1-mediated antioxidant defense against neuronal damage during cerebral ischemia/reperfusion injury has not been thoroughly investigated. Thus, the objective of this study was to evaluate whether GRX1 protects neurons against oxygen-glucose deprivation/reoxygenation (OGD/R)-evoked oxidative stress injury in an in vitro model of cerebral ischemia/reperfusion injury. Our data revealed that GRX1 was induced by OGD/R treatment in neurons. Functional assays indicated that loss of GRX1 exacerbated OGD/R-induced apoptosis and the generation of reactive oxygen species (ROS), while GRX1 up-regulation protected against OGD/R-evoked neuronal injury. Further investigation revealed that GRX1 promoted the nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and enhanced transcription of the Nrf2/antioxidant response element (ARE) in GOD/R-exposed neurons. Furthermore, GRX1 promoted the activation of Nrf2/ARE associated with the modulation of glycogen synthase kinase-3ß (GSK-3ß). GSK-3ß inhibition blocked GRX1 knockdown-mediated suppression of Nrf2 activation. Notably, the suppression of Nrf2 partially reversed GRX1-mediated anti-oxidative stress injury in OGD/R-exposed neurons. In summary, these findings indicate that GRX1 protects neurons against OGD/R-induced oxidative stress injury by enhancing Nrf2 activation via the modulation of GSK-3ß. Our study suggests that GRX1 is a potential neuroprotective protein that protects against cerebral ischemia/reperfusion injury.


Assuntos
Glutarredoxinas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/fisiologia , Camundongos , Neurônios/metabolismo , Estresse Oxidativo/fisiologia
2.
Int J Nanomedicine ; 16: 2311-2322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776435

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aß) is a peptide involved in AD progression, and a high level of Aß is highly correlated with severe AD. Identifying and quantifying Aß levels helps in the early treatment of AD and reduces the factors associated with AD. MATERIALS AND METHODS: This research introduced a dual probe detection system involving aptamers and antibodies to identify Aß. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized. RESULTS: This dual probe-modified surface enhanced the current flow during Aß detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aß peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aß. CONCLUSION: Aß-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aß.


Assuntos
Doença de Alzheimer/diagnóstico , Ouro/química , Sondas Moleculares/química , Nanopartículas/química , Peptídeos beta-Amiloides/metabolismo , Eletrodos , Humanos , Limite de Detecção , Modelos Lineares , Nanopartículas/ultraestrutura , Fragmentos de Peptídeos , Multimerização Proteica , Reprodutibilidade dos Testes , Espectrometria por Raios X , Propriedades de Superfície
3.
Med Sci Monit ; 26: e919600, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32114591

RESUMO

BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI) has been widely applied in clinical practice in China to treat functional confusion caused by brain diseases. Sevoflurane, a frequently-used inhalational anesthetic, was discovered to have neurotoxicity that can cause neurological damage in patients. The present study was performed to investigate the protective effect of CPCGI on sevoflurane-induced nerve damage and to reveal the neuroprotective mechanisms of CPCGI. MATERIAL AND METHODS Firstly, the hippocampal neurons were separated from Sprague-Dawley embryonic rats, and were stimulated by 3% sevoflurane for different times (0, 2, 4, and 6 h). Then, cell viability and cell apoptosis were assessed by thiazolyl blue tetrazolium bromide (MTT) and flow cytometry (FCM), respectively. Western blot analysis was used to determine the apoptosis-related protein expression levels. RESULTS The results demonstrated that 3% sevoflurane significantly inhibited cell viability but induced cell apoptosis in neurons in a time-dependent manner. Treatment with 3% sevoflurane also promoted the Bax (B cell leukemia/lymphoma 2​ (Bcl2)-associated X protein) and cleaved caspase3 protein expressions, and suppressed Bcl-2 and pro-caspase3 expressions in hippocampal neurons. In addition, phosphorylated (p)-p38 and p-p65 expression and the ratio of p-p38/p38 and p-p65/p65 were upregulated in a time-dependent manner after 3% sevoflurane treatment. Further analysis indicated that all the effects of 3% sevoflurane on hippocampal neurons were reversed by CPCGI pre-treatment. CONCLUSIONS We demonstrated the neuroprotective role of CPCGI in sevoflurane-stimulated neuronal cell damage via regulation of the MAPK/NF-kappaB signaling pathway.


Assuntos
Cerebrosídeos , Gangliosídeos , Hipocampo , NF-kappa B/metabolismo , Neurônios , Sevoflurano/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Anestésicos Inalatórios/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cerebrosídeos/metabolismo , Cerebrosídeos/farmacologia , Gangliosídeos/metabolismo , Gangliosídeos/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA