RESUMO
BACKGROUND: Inflammatory bowel disease (IBD) is a progressive and debilitating inflammatory disease of the gastrointestinal tract (GIT). Despite recent advances, precise treatment and noninvasive monitoring remain challenging. METHODS: Herein, we developed orally-administered, colitis-targeting and hyaluronic acid (HA)-modified, core-shell curcumin (Cur)- and cerium oxide (CeO2)-loaded nanoprobes (Cur@PC-HA/CeO2 NPs) for computed tomography (CT) imaging-guided treatment and monitoring of IBD in living mice. RESULTS: Following oral administration, high-molecular-weight HA maintains integrity with little absorption in the upper GIT, and then actively accumulates at local colitis sites owing to its colitis-targeting ability, leading to specific CT enhancement lasting for 24 h. The retained NPs are further degraded by hyaluronidase in the colon to release Cur and CeO2, thereby exerting anti-inflammatory and antioxidant effects. Combined with the ability of NPs to regulate intestinal flora, the oral NPs result in substantial relief in symptoms. Following multiple treatments, the gradually decreasing range of the colon with high CT attenuation correlates with the change in the clinical biomarkers, indicating the feasibility of treatment response and remission. CONCLUSION: This study provides a proof-of-concept for the design of a novel theranostic integration strategy for concomitant IBD treatment and the real-time monitoring of treatment responses.
Assuntos
Cério , Curcumina , Ácido Hialurônico , Doenças Inflamatórias Intestinais , Nanopartículas , Nanomedicina Teranóstica , Animais , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos , Cério/química , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Nanomedicina Teranóstica/métodos , Administração Oral , Nanopartículas/química , Ácido Hialurônico/química , Hialuronoglucosaminidase/metabolismo , Tomografia Computadorizada por Raios X , Camundongos Endogâmicos C57BL , Colo/diagnóstico por imagem , Colo/patologia , Colo/metabolismo , Humanos , Colite/tratamento farmacológicoRESUMO
Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.
Assuntos
Biofilmes , Quitosana , Cárie Dentária , Nanopartículas , Ácido Fítico , Cárie Dentária/prevenção & controle , Quitosana/química , Quitosana/farmacologia , Humanos , Nanopartículas/química , Ácido Fítico/química , Ácido Fítico/farmacologia , Ácido Fítico/administração & dosagem , Animais , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , CamundongosRESUMO
Personalized antitumor immunotherapy utilizing neoantigen vaccines holds great promise. However, the limited immunogenicity of existing recognized neoantigens and the inadequate stimulation of antitumor immune responses by conventional adjuvants pose significant challenges. To address these limitations, we developed a nanovaccine that combines a BCG bacterial cell wall skeleton (BCG-CWS) based nanoscale adjuvant (BCNA) with peptide neoantigens (M27 and M30). This integrated approach provides an efficient translational strategy for cancer immunotherapy. The BCNA nanovaccine, formulated with PLGA as an emulsifier, exhibits excellent biocompatibility and superior antigen presentation compared with conventional BCG-CWS adjuvants. Subcutaneous immunization with the BCNA-based nanovaccine effectively targets lymph nodes, eliciting robust innate and tumor-specific immune responses. Importantly, our findings demonstrate that BCNAs significantly enhance neoantigen immunogenicity while minimizing acute systemic toxicity. Furthermore, when combined with a mouse PD-L1 antibody, our strategy achieves complete tumor elimination in 60% of cases and prevents 25% of tumor growth in a melanoma mouse model. In conclusion, our BCNA-based nanovaccine represents a promising avenue for advancing personalized therapeutic neoantigen vaccines and holds significant implications for enhancing personalized immunotherapy and improving patient outcomes in the field of cancer treatment.
Assuntos
Adjuvantes Imunológicos , Vacinas Anticâncer , Imunoterapia , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias/imunologia , Feminino , Humanos , Parede Celular/imunologia , Parede Celular/química , Mycobacterium bovis/imunologia , Nanopartículas/química , Vacina BCG/imunologia , Linhagem Celular TumoralRESUMO
Intravesical Bacillus Calmette-Guérin (BCG) is a well-established strategy for managing high-risk nonmuscle-invasive bladder cancer (NMIBC); however, over half of patients still experience disease recurrence or progression. Although the combined intravesical instillation of various chemotherapeutic drugs is implemented in clinical trials to enhance the BCG therapy, the outcome is far from satisfying due to severe irritative effects and treatment intolerance at high doses. Therefore, it is adopted the "biotin-streptavidin strategy" to doxorubicin (DOX)-encapsulated nanoparticles within live BCG bacteria (DOX@BCG) to improve treatment outcomes. Adherence of BCG to the bladder epithelium helps precisely target DOX@BCG to the local tumor cells and simultaneously increases intratumoral transport of therapeutic drugs. DOX@BCG effectively inhibits cancer progression and prolongs the survival of rats/mice with orthotopic bladder cancer owing to synergism between BCG-immunotherapy, DOX-chemotherapy, and DOX-induced immunogenic tumor cell death; furthermore, it exhibits improved tolerance and biosafety, and establishes antitumor immunity in the tumor microenvironment. Therefore, the drug-loaded live BCG bacterial delivery system holds considerable potential for clinical translation in the intravesical treatment of bladder cancer.
Assuntos
Doxorrubicina , Imunoterapia , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Camundongos , Humanos , Nanopartículas/química , Linhagem Celular Tumoral , Mycobacterium bovis , Ratos , Vacina BCG , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estreptavidina/químicaRESUMO
PURPOSE: The study aimed to investigate the diagnostic accuracy of prostate health index (PHI) and apparent diffusion coefficient (ADC) values in predicting prostate cancer (PCa) and construct a nomogram for the prediction of PCa and clinically significant PCa (CSPCa) in Prostate Imaging-Reporting and Data System (PI-RADS) three lesions cohort. METHODS: This study prospectively enrolled 301 patients who underwent multiparametric magnetic resonance (mpMRI) and were scheduled for prostate biopsy. The receiver operating characteristic curve (ROC) was performed to estimate the diagnostic accuracy of each predictor. Univariable and multivariable logistic regression analysis was conducted to ascertain hidden risk factors and constructed nomograms in PI-RADS three lesions cohort. RESULTS: In the whole cohort, the area under the ROC curve (AUC) of PHI is relatively high, which is 0.779. As radiographic parameters, the AUC of PI-RADS and ADC values was 0.702 and 0.756, respectively. The utilization of PHI and ADC values either individually or in combination significantly improved the diagnostic accuracy of the basic model. In PI-RADS three lesions cohort, the AUC for PCa was 0.817 in the training cohort and 0.904 in the validation cohort. The AUC for CSPCa was 0.856 in the training cohort and 0.871 in the validation cohort. When applying the nomogram for predicting PCa, 50.0% of biopsies could be saved, supplemented by 6.9% of CSPCa being missed. CONCLUSION: PHI and ADC values can be used as predictors of CSPCa. The nomogram included PHI, ADC values and other clinical predictors demonstrated an enhanced capability in detecting PCa and CSPCa within PI-RADS three lesions cohort.
Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Imageamento por Ressonância Magnética , Neoplasias da Próstata/patologia , Antígeno Prostático Específico/análise , Estudos Retrospectivos , BiópsiaRESUMO
Background: Prostate cancer (PCa) is highly heterogeneous, which makes it difficult to precisely distinguish the clinical stages and histological grades of tumor lesions, thereby leading to large amounts of under- and over-treatment. Thus, we expect the development of novel prediction approaches for the prevention of inadequate therapies. The emerging evidence demonstrates the pivotal role of lysosome-related mechanisms in the prognosis of PCa. In this study, we aimed to identify a lysosome-related prognostic predictor in PCa for future therapies. Methods: The PCa samples involved in this study were gathered from The Cancer Genome Atlas database (TCGA) (n = 552) and cBioPortal database (n = 82). During screening, we categorized PCa patients into two immune groups based on median ssGSEA scores. Then, the Gleason score and lysosome-related genes were included and screened out by using a univariate Cox regression analysis and the least absolute shrinkage and selection operation (LASSO) analysis. Following further analysis, the probability of progression free interval (PFI) was modeled by using unadjusted Kaplan-Meier estimation curves and a multivariable Cox regression analysis. A receiver operating characteristic (ROC) curve, nomogram and calibration curve were used to examine the predictive value of this model in discriminating progression events from non-events. The model was trained and repeatedly validated by creating a training set (n = 400), an internal validation set (n = 100) and an external validation (n = 82) from the cohort. Results: Following grouping by ssGSEA score, the Gleason score and two LRGs-neutrophil cytosolic factor 1 (NCF1) and gamma-interferon-inducible lysosomal thiol reductase (IFI30)-were screened out to differentiate patients with or without progression (1-year AUC = 0.787; 3-year AUC = 0.798; 5-year AUC = 0.772; 10-year AUC = 0.832). Patients with a higher risk showed poorer outcomes (p < 0.0001) and a higher cumulative hazard (p < 0.0001). Besides this, our risk model combined LRGs with the Gleason score and presented a more accurate prediction of PCa prognosis than the Gleason score alone. In three validation sets, our model still achieved high prediction rates. Conclusion: In conclusion, this novel lysosome-related gene signature, coupled with the Gleason score, works well in PCa for prognosis prediction.
RESUMO
Prostate cancer (PCa) is one of the leading causes of death for men worldwide. Unlike some other types of cancer, there is a lack of targeted therapy for prostate cancer patients that can kill cancer cells but do much less damage to the normal tissue. In this paper, we report on an adenoviral vector enhanced prostate cancer specific transferrin conjugated drug targeted therapy. In particular, a functional PCa-specific gene probe is introduced to drive and up-regulate the transferrin receptor expression on the PCa via adenoviral vector. As a result, significantly enhanced accumulation of nanoscale transferrin-doxorubicin (Tf-DOX) protein drug conjugates and concomitant notably elevated PCa tumor inhibition are observed. This conceptual strategy provides the proof-of-concept for the targeted therapy of PCa that is highly desired but not yet developed.