Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(7): 3170-3177, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36744794

RESUMO

The peak photoluminescence (PL) of conventional fluorophores is independent of the excitation wavelength (called Kasha's rule), while the search of metal-organic framework materials with the so-called anti-Kasha's rule emission remains very limited. Herein, we report the observation of anti-Kasha's rule emission in a multicomponent PL three-dimensional nanotubular metal-organic framework (abbr. MOF-NT), [Zn(µ-L)(µ-bix)]n·0.33nH2O [H2L = biphenyl-3,5-dicarboxylic acid; bix = 1,4-bis(imidazole-1-ylmethyl)benzene]. The MOF-NT crystalline sample represents a notable example of strong excitation-dependent fluorescence from the ultraviolet to the visible spectral region. Moreover, by virtue of electronic flexibility and high PL efficiency, MOF-NT shows a discriminative PL response between isomeric nitroaromatic compounds. The work demonstrated the intrinsic anti-Kasha's rule emission in the crystalline-state MOF materials, providing new visions for the development of advanced solid-state emissive materials.

2.
Chem Commun (Camb) ; 59(9): 1229-1232, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36629868

RESUMO

High-temperature negative thermal quenching (NTQ) phosphors are crucial to high-performance light-emitting devices. Herein, we report the high-temperature NTQ effect in deep-red to near-infrared (NIR) emitting copper iodide cluster-based coordination polymers as unconventional phosphors, whose NTQ operating temperature can reach as high as 500 K, the highest temperature reached by NTQ molecular-based materials.

3.
Polymers (Basel) ; 14(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956732

RESUMO

Wall slip directly affects the molding quality of plastic parts by influencing the stability of the filling flow field during micro injection molding. The accurate modeling of wall slip in nanochannels has been a great challenge for pseudoplastic polymer melts. Here, an effective modeling method for polymer melt flow in nanochannels based on united-atom molecular dynamics simulations is presented. The effects of driving forces and wall-fluid interactions on the behavior of polyethylene melt under Poiseuille flow conditions were investigated by characterizing the slip velocity, dynamics information of the flow process, and spatial configuration parameters of molecular chains. The results indicated that the united-atom molecular dynamics model could better describe the pseudoplastic behavior in nanochannels than the commonly used finitely extensible nonlinear elastic (FENE) model. It was found that the slip velocity could be increased with increasing driving force and show completely opposite variation trends under different orders of magnitude of the wall-fluid interactions. The influence mechanism was interpreted by the density distribution and molecular chain structure parameters, including disentanglement and orientation, which also coincides with the change in the radius of gyration.

4.
Polymers (Basel) ; 13(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34961002

RESUMO

Capillary rheometers have been widely used for the rheological measurement of polymer melts. However, when micro capillary dies are used, the results are usually neither accurate nor consistent, even under the same measurement conditions. In this work, theoretical modeling and experimental studies were conducted for a more profound understanding of the mechanism by which the initial and boundary conditions influence the inaccuracy in the apparent shear viscosity determination with micro capillary dies (diameters: 500 µm, 200 µm, 100 µm). The results indicate that the amount of polymer initially in the barrel, the pre-compaction pressure and the capillary die diameter have a significant influence on the development of the micro scale inlet pressure, which directly determines the accuracy of the measurement at low and medium shear rates. The varying melt compressibility was confirmed to be the main factor directly related to the inaccuracy in the micro scale apparent shear viscosity determination. It is suggested that measures such as reducing the amount of polymer initially in the barrel and increasing the pre-compaction pressure could be used to reduce the measurement inaccuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA