Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Diagn Microbiol Infect Dis ; 109(4): 116350, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38761614

RESUMO

BACKGROUND: Severe Fever with Thrombocytopenia Syndrome (SFTS) is a tick-borne disease caused by the SFTS virus (SFTSV) which has the potential to become a pandemic and is currently a major public health concern. CASE PRESENTATION: We present the case of a 74-year-old female from an urban area of Chongqing, with leukocytopenia, thrombocytopenia, organ function, inflammatory, blood coagulation, and immune abnormalities. SFTSV infection was confirmed through molecular detection and metagenomic next-generation sequencing (mNGS) analysis, indicating a diagnosis of SFTS due to the patient's history of tick bites. The patient received symptomatic and supportive therapy, including antibiotics, antiviral treatment, and antifungal therapy, and finally discharged from the hospital on day 18. CONCLUSIONS: This study highlights the need for increased awareness, early diagnosis, and prompt treatment for tick-borne SFTS. It also provides a comprehensive understanding of the disease's characteristics, pathogenesis, detection methods, and available treatments.

2.
Kaohsiung J Med Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820598

RESUMO

Suitable biomaterials with seed cells have promising potential to repair bone defects. However, bone marrow mesenchymal stem cells (BMSCs), one of the most common seed cells used in tissue engineering, cannot differentiate efficiently and accurately into functional osteoblasts. In view of this, a new tissue engineering technique combined with BMSCs and scaffolds is a major task for bone defect repair. Lentiviruses interfering with miR-136-5p or Smurf1 expression were transfected into BMSCs. The effects of miR-136-5p or Smurf1 on the osteogenic differentiation (OD) of BMSCs were evaluated by measuring alkaline phosphatase activity and calcium deposition. Then, the targeting relationship between miR-136-5p and Smurf1 was verified by bioinformatics website analysis and dual luciferase reporter assay. Then, a rabbit femoral condyle bone defect model was established. miR-136-5p/BMSCs/ß-TCP scaffold was implanted into the defect, and the repair of the bone defect was detected by Micro-CT and HE staining. Elevating miR-136-5p-3p or suppressing Smurf1 could stimulate OD of BMSCs. miR-136-5p negatively regulated Smurf1 expression. Overexpressing Smurf1 reduced the promoting effect of miR-136-5p on the OD of BMSCs. miR-136-5p/BMSCs/ß-TCP could strengthen bone density in the defected area and accelerate bone repair. SmurF1-targeting miR-136-5p-modified BMSCs combined with 3D-printed ß-TCP scaffolds can strengthen osteogenic activity and alleviate bone defects.

3.
PeerJ ; 11: e15967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37667751

RESUMO

Microplastic (MP) pollution is lately receiving increasing attention owing to its harmful impact on terrestrial ecosystems. In this microcosm study, we assessed the uptake and transfer of MPs in Solanum nigrum seedlings exposed to 50 mg L-1 of 0.2-µm polystyrene (PS) beads for 30 d. Confocal laser scanning micrographs helped detect highly intense red fluorescence signals from PS-MP beads in S. nigrum root compared with the controls. Confocal images revealed that the PS beads were primarily distributed in the epidermis and xylem of roots and vascular systems of stems and leaves. Scanning electron microscopy showed that PS beads were scattered on the cell walls of the root xylem and leaf vascular system. Few PS beads were transferred from roots to stems and leaves via the vascular system following the transpiration stream. In conclusion, our findings showed that PS beads accumulated in S. nigrum roots and were transferred from the roots to the aerial parts.


Assuntos
Ecossistema , Solanum nigrum , Microplásticos , Plásticos , Poliestirenos , Plântula , Microscopia Eletrônica de Varredura
4.
Front Microbiol ; 14: 1292082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293559

RESUMO

Compound Chinese medicine (F1) is a traditional prescription in Chinese medicine that is commonly used to treat spleen deficiency diarrhea (SDD). It has demonstrated remarkable effectiveness in clinical practice. However, the precise mechanism by which it exerts its antidiarrheal effect is still unclear. This study aimed at investigating the antidiarrheal efficacy and mechanism of F1 on senna-induced secretory diarrhea (SDD). Senna was utilized to induce the development of a mouse model of senna-induced secretory diarrhea (SDD) in order to observe the rate of diarrhea, diarrhea index, blood biochemistry, and histopathological changes in the small intestine. Additionally, the levels of sodium and hydrogen exchange protein 3 (NHE3) and short-chain fatty acids (SCFAs) were determined using enzyme-linked immunosorbent assay (ELISA). The impact of F1 on the senna-induced SDD mouse models was evaluated by monitoring changes in the gut microbiota through 16S rRNA (V3-V4) sequencing. The results demonstrated that F1, a traditional Chinese medicine, effectively increased the body weight of SDD mice and reduced the incidence of diarrhea and diarrhea index. Additionally, F1 restored liver and kidney function, reduced the infiltration of inflammatory cells in intestinal tissue, and promoted the growth of intestinal villi. Furthermore, F1 was found to enhance the expression of NHE3 and SCFAs. It also increased the abundance of Firmicutes and Lactobacillus species, while decreasing the abundance of Proteobacteria and Shigella.

5.
Foods ; 11(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35954056

RESUMO

The present study was aimed to elucidate the flavor formation mechanism of Changqing tea. High-performance liquid chromatography (HPLC) analysis showed that the total catechins of Changqing tea was 65-160 mg/g, with 16-34 mg/g non-galloyated catechins and 49-126 mg/g galloylated catechins. Tea polyphenols and free amino acids account for 286-312 mg/g and 35-89 mg/g, respectively. Transcriptome of Changqing tea during different seasons revealed 316, 130 and 12 DEGs in comparisons of spring vs. autumn, spring vs. summer, and summer vs. autumn, respectively. Compared to spring, the genes involved in flavonoid biosynthesis and bitter imparted amino acids were up-regulated in summer and autumn. Metabolome analysis was conducted by using HPLC-MS; the result indicated that umami and kokumi contributing amino acids were decreased in summer and autumn compared with spring. It could be concluded that the coordination of flavonoid biosynthesis and amino acids biosynthesis resulted in the special flavor of Changqing tea.

6.
J Cardiothorac Surg ; 17(1): 94, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505380

RESUMO

BACKGROUND: Diabetes and impaired glucose regulation are very common in patients with coronary artery disease (CAD). In this study, we aim to investigate the prevalence of abnormal glucose regulation in men and women in Chinese CAD patients. METHODS: In this retrospective study, 4100 patients (male, n = 2873; female, n = 1227)with CAD were enrolled. The mean age of these patients was 63 years. The demographic data, medical history, echocardiography findings and blood investigations were collected and analyzed. RESULTS: In this population, 953 (24%) patients had definite diagnosis of type 2 diabetes mellitus, including 636 males (23%) and 317 females (27%). There was a higher prevalence of diabetes in females than men (p < 0.05). For the remaining patients, 48% (n = 959) undergone an oral glucose tolerance test (OGTT), which revealed that 83 male patients (12%) and 41 female patients (16%) suffered from the type 2 diabetes (p > 0.05). 283 men (40%) and 105 women (41%) had impaired glucose regulation (IGR) (p > 0.05). Only 338 men (25%) and 109 women (19%) showed the normal glucose regulation, implying a higher prevalence of abnormal glucose regulation in females (p < 0.01). The odd ratio (OR) showed that women were more prone to have diabetes mellitus or IGT than men and the OR was 1.44 and 1.43 respectively. CONCLUSION: Abnormal glucose regulation is highly prevalent in CAD patients. The women are more prone to have diabetes mellitus or IGT than men.


Assuntos
Glicemia/metabolismo , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Glicemia/química , China/epidemiologia , Doença da Artéria Coronariana/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
7.
Bioengineered ; 13(3): 7351-7366, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264070

RESUMO

Osteosarcoma is a common bone malignancy in children and adolescents. Chemotherapeutic drug resistance is the major factor impacting the surgical outcome and prognosis of patients with osteosarcoma. This investigation assessed the role and mechanism of circular RNA_ANKIB1 in the development of osteosarcoma. The circular RNA (circ) _ANKIB1, microRNA (miR)-26b-5p, enhancer of zeste homolog 2 (EZH2) expression in OS samples was investigated through RT-qPCR. The EZH2, multidrug resistance protein 1 (MRP1), P-gp, and lipoprotein receptor-related protein (LRP) protein expressions were analyzed through western blot. The association between circ_ANKIB1 and the occurrence of clinic-pathological features in OS patients was assessed; the circular features of circ_ANKIB1 were analyzed. The hFOB1.19, KHOS, U2-OS OS cells were used to study the semi-inhibitory concentration IC50 of Doxorubicin (DXR)-resistant cells, clone formation, invasion, and apoptosis. The luciferase assay was used to study the binding of circ-ANKIB1 with miR-26b-5p and the targeting of miR-26b-5p with EZH2. In vivo experiments were performed via subcutaneous tumorigenic experiments. MiR-26b-5p in OS tissues and cells and DXR-resistant OS tissues and cells was silenced while circ_ANKIB1 and EZH2 were elevated. Circ_ANKIB1 silencing elevated miR-26b-5p, repressed EZH2, MRP1, P-gp, LRP, IC50, and elevated OS advancement. Circ_ANKIB1 bind miR-26b-5p. Reduced miR-26b-5p revered the influence of silencing circ_ANKIB1 on DXR resistant OS cells. MiR-26b-5p targeted EZH2, and EZH2 elevation reversed the impact of increasing miR-26b-5p on DXR resistant cells. Circ_ANKIB1 silencing suppressed DXR-resistant OS cells in vivo. In conclusion, Circ_ANKIB1 binds miR-26b-5p and modulates EZH2 to accelerate the chemo-resistance of osteosarcoma.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Adolescente , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Criança , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , RNA Circular/genética
8.
Bioengineered ; 13(4): 8038-8050, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35311620

RESUMO

ARSTRACTN6-methyladenosine (m6A) methylation is the most common and abundant methylation modification of eukaryotic mRNAs, which is involved in tumor initiation and progression. The study aims to explore the potential role and the regulatory mechanism of fat mass and obesity associated (FTO) in osteosarcoma (OS) progression. In this study, we detected the expressions of Krüppel-like factor 3 (KLF3) in OS cells and tissues and found that the mRNA and protein levels of KLF3 were increased in OS cells and tissues and significantly related to tumor size, metastasis, and TNM stage and poor prognosis of OS patients. FTO promoted the proliferation and invasion and suppressed apoptosis of OS cells through cell experiments in vitro. Further mechanism dissection revealed that FTO and YTHDF2 enforced the decay of KLF3 mRNA and decreased its expression. FTO-mediated mRNA demethylation inhibited KLF3 expression in the YTHDF2-dependent manner. Moreover, KLF3 overexpression abrogated FTO-induced oncogenic effects on the proliferation and invasion of OS cells. Overall, our findings showed that FTO-mediated m6A modification of KLF3 promoted OS progression, which may provide a therapeutic target for OS.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Neoplasias Ósseas , Fatores de Transcrição Kruppel-Like , Osteossarcoma , Adenosina/análogos & derivados , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neoplasias Ósseas/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Osteossarcoma/genética , RNA Mensageiro/genética
9.
Bioengineered ; 13(3): 7238-7252, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266447

RESUMO

As a staple chemotherapy medicine, cisplatin (DDP) is extensively applied in cancer patients, but its drug resistance is limited. Numerous studies have elucidated that long non-coding RNA (lncRNA) performs as a pivotal agent in osteosarcoma (OS). Nevertheless, lncRNA long intergenic non-coding 00641 (LINC00641)'s functions in DDP resistance for OS remain obscure. The purpose of this study was to investigate the effect and mechanism of LINC00641 on drug resistance of OS. The tissues of both clinical cancer patients and the normal control were gathered. Detection of LINC00641, microRNA-320d (miR-320d) and myeloid cell leukemia-1 (MCL1) was conducted. After the selection of OS cell lines, the detection of cell advancement was applied. Series of experiments were conducted to verify the interaction of LINC00641, miR-320d and MCL1. Xenografted tumor model in vivo was utilized to determine the function of LINC00641. The data displayed, LINC00641 was prominently elevated in OS tissues and cells, especially in DDP-resistant tumors and cell lines. Knock-down LINC00641 was able to attenuate progression of DDP-resistant OS cells thus dampening their drug resistance toward DDP. Moreover, knock-downing LINC00641 gene was also able to manifest antagonism toward DDP-resistance in vivo. On the grounds of bioinformatics prediction, a direct binding of LINC00641 with miR-320d existed, whose target was MCL1. Meanwhile, LINC00641 modulated MCL1 via targeting miR-320d. Additionally, repressive LINC00641 blocked MCL1 via emulative interaction with miR-320d, thus expediting DDP-sensitivity of OS cells. All in all, it is found that LINC00641 is available to escalate drug resistance of DDP-resistant OS cells via mediation of miR-320d/MCL1 axis.


Assuntos
Neoplasias Ósseas , Leucemia , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Apoptose , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , MicroRNAs/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Exp Ther Med ; 22(5): 1342, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34630696

RESUMO

Long non-coding RNAs (lncRNAs) can function as onco-lncRNAs in several types of human cancer, including retinoblastoma (Rb). The present study investigated the potential role and regulatory mechanism of the lncRNA myocardial infarction-associated transcript (MIAT) in Rb. To do so, the expression levels of MIAT, microRNA (miR)-665, and LIM and SH3 protein 1 (LASP1) in Rb tissues from patients or Rb cells were analysed using reverse transcription quantitative PCR. The interactions between miR-665 and MIAT/LASP1 were confirmed by the dual-luciferase reporter assay. MTT, Transwell (to assess migration and invasion) and western blotting assays were used to explore the functions of the MIAT/miR-665/LASP1 axis on Rb progression in vitro. The results of the present study indicated that MIAT targeted miR-665. In Rb tissues and cell lines, high expression of MIAT was observed, whereas miR-665 was downregulated in Rb tissues. Furthermore, the proliferation and migratory and invasive abilities of Rb Y79 and HXO-RB44 cells were decreased following MIAT downregulation or miR-665 overexpression. In addition, LASP1 was identified as a target gene of miR-665. Both the decreased expression of miR-665 and the elevated expression of LASP1 reversed the suppressive effects of MIAT knockdown on the proliferation and migratory and invasive abilities of Y79 cells. Furthermore, MIAT silencing attenuated the development of Rb by regulating the miR-665/LASP1 axis. Taken together, these findings suggested that MIAT may be considered as a possible therapeutic target for Rb.

11.
J Mol Histol ; 52(2): 279-288, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33532936

RESUMO

MicroRNA-27a (miR-27a) modulates osteogenic differentiation (OD); however, the mechanism by which it influences osteoclastic activity in the glucocorticoid (GC)-elicited osteoporotic bone is still unclear. Bone marrow was obtained from the proximal femur of patients (n = 3) with a femoral neck fracture and those (n = 3) with steroid-related osteonecrosis of the femoral head (ONFH). GC was applied to an established ONFH cell model from human bone marrow mesenchymal stem cells (hBMSCs). The miR-27a expression profiles were found to be downregulated in ONFH samples and GC-induced hBMSCs using microarray analysis and real-time quantitative polymerase chain reaction, whereas the OD capacity of hBMSCs was significantly reduced in the GC group compared with the control group. Subsequent transfection of an miR-27a mimic in hBMSCs revealed that the OD capacity of cells was remarkably strengthened in the GC group compared with the miR-control group. Bioinformatics software (TargetScan) predicted that phosphoinositide 3-kinase (PI3K) might be a potential miR-27a target, which was indicated by dual-luciferase reporter assay. Compared with the control group, the GC group exhibited a significantly downregulated protein expression level of PI3K and its downstream protein kinase B (Akt) and mammalian target of rapamycin (mTOR) expression. Furthermore, administration of 10 µM 740 Y-P, a cell-permeable phosphopeptide activator of PI3K, to hBMSCs increased the expression of Akt and mTOR. Treatment with 740 Y-P reversed the effect of miR-27a on OD in hBMSCs. In conclusion, miR-27a is thought to relieve ONFH and the OD repression in GC-induced hBMSCs by targeting the PI3K/Akt/mTOR pathway.


Assuntos
Glucocorticoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética
12.
Biomaterials ; 265: 120255, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33099065

RESUMO

Although mechanical loads are integral for musculoskeletal tissue homeostasis, overloading and traumatic events can result in tissue injury. Conventional drug delivery approaches for musculoskeletal tissue repair employ localized drug injections. However, rapid drug clearance and inadequate synchronization of molecule provision with healing progression render these methods ineffective. To overcome this, a programmable mechanoresponsive drug delivery system was developed that utilizes the mechanical environment of the tissue during rehabilitation (for example, during cartilage repair) to trigger biomolecule provision. For this, a suite of mechanically-activated microcapsules (MAMCs) with different rupture profiles was generated in a single fabrication batch via osmotic annealing of double emulsions. MAMC physical dimensions were found to dictate mechano-activation in 2D and 3D environments and their stability in vitro and in vivo, demonstrating the tunability of this system. In models of cartilage regeneration, MAMCs did not interfere with tissue growth and activated depending on the mechanical properties of the regenerating tissue. Finally, biologically active anti-inflammatory agents were encapsulated and released from MAMCs, which counteracted degradative cues and prevented the loss of matrix in living tissue environments. This unique technology has tremendous potential for implementation across a wide array of musculoskeletal conditions for enhanced repair of load-bearing tissues.


Assuntos
Cartilagem , Regeneração , Suporte de Carga
13.
Cell Discov ; 6(1): 83, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33298875

RESUMO

The COVID-19 pandemic has accounted for millions of infections and hundreds of thousand deaths worldwide in a short-time period. The patients demonstrate a great diversity in clinical and laboratory manifestations and disease severity. Nonetheless, little is known about the host genetic contribution to the observed interindividual phenotypic variability. Here, we report the first host genetic study in the Chinese population by deeply sequencing and analyzing 332 COVID-19 patients categorized by varying levels of severity from the Shenzhen Third People's Hospital. Upon a total of 22.2 million genetic variants, we conducted both single-variant and gene-based association tests among five severity groups including asymptomatic, mild, moderate, severe, and critical ill patients after the correction of potential confounding factors. Pedigree analysis suggested a potential monogenic effect of loss of function variants in GOLGA3 and DPP7 for critically ill and asymptomatic disease demonstration. Genome-wide association study suggests the most significant gene locus associated with severity were located in TMEM189-UBE2V1 that involved in the IL-1 signaling pathway. The p.Val197Met missense variant that affects the stability of the TMPRSS2 protein displays a decreasing allele frequency among the severe patients compared to the mild and the general population. We identified that the HLA-A*11:01, B*51:01, and C*14:02 alleles significantly predispose the worst outcome of the patients. This initial genomic study of Chinese patients provides genetic insights into the phenotypic difference among the COVID-19 patient groups and highlighted genes and variants that may help guide targeted efforts in containing the outbreak. Limitations and advantages of the study were also reviewed to guide future international efforts on elucidating the genetic architecture of host-pathogen interaction for COVID-19 and other infectious and complex diseases.

14.
Cell Biol Int ; 44(12): 2532-2540, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32869899

RESUMO

Osteogenic differentiation (OD) of bone marrow mesenchymal stem cells (BMSCs) is critically important for mitigation of osteoporosis. Glucocorticoids (GCs) are extensively used for treating chronic inflammation, although long-term exposure to GCs is capable of triggering osteoporosis. microRNAs (miRNAs) have been reported to play a critical role in bone diseases. In the present study, we treated BMSCs with dexamethasone (DEX) during OD to stimulate GC-mediated osteoporosis. Microarray and quantitative polymerase chain reaction (Q-PCR) assays demonstrated that miR-199a was upregulated during OD of BMSCs, while DEX treatment caused a significant reduction in miR-199a. Alkaline phosphatase (ALP) activity, Alizarin red (AR) staining, and Q-PCR were applied to assess the role of miRNA-199a overexpression in DEX-triggered OD inhibition. miR-199a was able to rescue OD and ALP activity, which were inhibited by DEX. Additionally, we observed that ALP, BMP2, COL1A1, and Runx2 were increased after transfection of miRNA-199a mimics. Furthermore, we confirmed that miRNA-199a facilitates OD of BMSCs through direct inhibition of Klotho protein and messenger RNA expression affecting the downstream fibroblast growth factor receptor 1/extracellular-signal-regulated kinase and Janus kinase 1/signal transducer and activator of transcription 1 pathways. This study indicates that miR-199a plays a critical role in preventing GC-mediated osteoblast differentiation and may function as a promising miRNA biomarker for osteoporosis.


Assuntos
Glucuronidase/metabolismo , MicroRNAs/genética , Osteogênese/genética , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Feminino , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Proteínas Klotho , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Mol Cell ; 79(3): 443-458.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32649883

RESUMO

Despite the prominent role of TDP-43 in neurodegeneration, its physiological and pathological functions are not fully understood. Here, we report an unexpected role of TDP-43 in the formation of dynamic, reversible, liquid droplet-like nuclear bodies (NBs) in response to stress. Formation of NBs alleviates TDP-43-mediated cytotoxicity in mammalian cells and fly neurons. Super-resolution microscopy reveals distinct functions of the two RRMs in TDP-43 NB formation. TDP-43 NBs are partially colocalized with nuclear paraspeckles, whose scaffolding lncRNA NEAT1 is dramatically upregulated in stressed neurons. Moreover, increase of NEAT1 promotes TDP-43 liquid-liquid phase separation (LLPS) in vitro. Finally, we discover that the ALS-associated mutation D169G impairs the NEAT1-mediated TDP-43 LLPS and NB assembly, causing excessive cytoplasmic translocation of TDP-43 to form stress granules, which become phosphorylated TDP-43 cytoplasmic foci upon prolonged stress. Together, our findings suggest a stress-mitigating role and mechanism of TDP-43 NBs, whose dysfunction may be involved in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Corpos de Inclusão Intranuclear/metabolismo , Neurônios/metabolismo , RNA Longo não Codificante/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Animais Geneticamente Modificados , Arsenitos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Corpos de Inclusão Intranuclear/efeitos dos fármacos , Corpos de Inclusão Intranuclear/ultraestrutura , Camundongos , Mutação , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Cultura Primária de Células , Transporte Proteico/efeitos dos fármacos , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Estresse Fisiológico
16.
Langmuir ; 36(29): 8617-8625, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32614598

RESUMO

The combination of polyelectrolytes and ionic surfactants in precise proportions presents the possibility of producing a new class of emulsifiers with tunable emulsification properties. We use chitosan along with dioctyl sulfosuccinate sodium, also known as aerosol-OT (AOT), to demonstrate that emulsion types can be varied, and phase inversion emulsification (PIE) can be induced via changes in the water-phase pH and the molar ratio of the surfactant to the repeat unit of the polyelectrolyte. Confocal microscopy of the emulsions shows that the morphology can be changed from O/W to O/W/O to W/O by varying the surfactant to polyelectrolyte molar ratio at a fixed aqueous-phase pH while maintaining droplet sizes in the range of micrometers to tens of micrometers. Measurements of the oil (toluene)-water partition coefficient suggest that controlling the emulsion type relies on the ability of the surfactants to partition from the bulk oil to the bulk water phase and to induce polyelectrolyte-surfactant aggregation. We confirm this hypothesis using different combinations of polyelectrolytes and surfactants. Changes in the water-phase pH in situ induce phase inversion only in a particular direction, which suggests that the complexes at the interface are in a kinetically trapped state. Changes in the molar ratio in situ by addition of an oppositely charged surfactant also can induce phase inversion.

17.
Cell Res ; 29(3): 233-247, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30728452

RESUMO

Mutations in RNA-binding proteins (RBPs) localized in ribonucleoprotein (RNP) granules, such as hnRNP A1 and TDP-43, promote aberrant protein aggregation, which is a pathological hallmark of various neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Protein posttranslational modifications (PTMs) are known to regulate RNP granules. In this study, we investigate the function of poly(ADP-ribosyl)ation (PARylation), an important PTM involved in DNA damage repair and cell death, in RNP granule-related neurodegeneration. We reveal that PARylation levels are a major regulator of the assembly-disassembly dynamics of RNP granules containing disease-related RBPs, hnRNP A1 and TDP-43. We find that hnRNP A1 can both be PARylated and bind to PARylated proteins or poly(ADP-ribose) (PAR). We further uncover that PARylation of hnRNP A1 at K298 controls its nucleocytoplasmic transport, whereas PAR-binding via the PAR-binding motif (PBM) of hnRNP A1 regulates its association with stress granules. Moreover, we reveal that PAR not only dramatically enhances the liquid-liquid phase separation of hnRNP A1, but also promotes the co-phase separation of hnRNP A1 and TDP-43 in vitro and their interaction in vivo. Finally, both genetic and pharmacological inhibition of PARP mitigates hnRNP A1- and TDP-43-mediated neurotoxicity in cell and Drosophila models of ALS. Together, our findings suggest a novel and crucial role for PARylation in regulating the dynamics of RNP granules, and that dysregulation in PARylation and PAR levels may contribute to ALS disease pathogenesis by promoting protein aggregation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Poli ADP Ribosilação/fisiologia , Agregação Patológica de Proteínas/genética , Animais , Linhagem Celular , Dano ao DNA/genética , Reparo do DNA/genética , Drosophila , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Camundongos , Proteínas de Ligação a RNA/genética
18.
Adv Funct Mater ; 29(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32655335

RESUMO

Delivery of biofactors in a precise and controlled fashion remains a clinical challenge. Stimuli-responsive delivery systems can facilitate 'on-demand' release of therapeutics in response to a variety of physiologic triggering mechanisms (e.g. pH, temperature). However, few systems to date have taken advantage of mechanical inputs from the microenvironment to initiate drug release. Here, we developed mechanically-activated microcapsules (MAMCs) that are designed to deliver therapeutics in an on-demand fashion in response to the mechanically loaded environment of regenerating musculoskeletal tissues, with the ultimate goal of furthering tissue repair. To establish a suite of microcapsules with different thresholds for mechano-activation, we first manipulated MAMC physical dimensions and composition, and evaluated their mechano-response under both direct 2D compression and in 3D matrices mimicking the extracellular matrix properties and dynamic loading environment of regenerating tissue. To demonstrate the feasibility of this delivery system, we used an engineered cartilage model to test the efficacy of mechanically-instigated release of TGF-ß3 on the chondrogenesis of mesenchymal stem cells. These data establish a novel platform by which to tune the release of therapeutics and/or regenerative factors based on the physiologic dynamic mechanical loading environment, and will find widespread application in the repair and regeneration of numerous musculoskeletal tissues.

19.
J Colloid Interface Sci ; 537: 579-587, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471612

RESUMO

HYPOTHESIS: Phase inversion emulsification (PIE) is a process that inverts the dispersed and continuous phases of an emulsion and is useful for preparing emulsions that are challenging to produce using conventional techniques. A recent work has shown that PIE can be induced by flowing an emulsion through a tapered channel. Although prior studies have shown that flow-induced PIE (FIPIE) is influenced by the flow conditions and wetting properties of the channel surface, little is known about the effect of surfactant structure on FIPIE. We hypothesize that FIPIE is affected by the composition and structure of the surfactant used for emulsion stabilization. EXPERIMENTS: We use Pluronics, a series of ABA triblock copolymers composed of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO) with various lengths (A = PEO, B = PPO), as model surfactants to test this hypothesis. We observe that triblock copolymer surfactants with long PEO blocks suppress FIPIE. A scaling analysis based on a polymer brush model qualitatively agrees with the experimental observation. We also show that for small molecular weight Pluronics, FIPIE is significantly suppressed when Pluronics with large PPO blocks are used. FINDINGS: Our results strongly indicate that the steric repulsion provided by the PEO blocks as well as the dilatational elasticity provided by the PPO blocks are key factors that control the FIPIE process.

20.
Cell Death Dis ; 9(10): 953, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237395

RESUMO

Parkin and PINK1 play an important role in mitochondrial quality control, whose malfunction may also be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). Excessive TDP-43 accumulation is a pathological hallmark of ALS and is associated with Parkin protein reduction in spinal cord neurons from sporadic ALS patients. In this study, we reveal that Parkin and PINK1 are differentially misregulated in TDP-43 proteinopathy at RNA and protein levels. Using knock-in flies, mouse primary neurons, and TDP-43Q331K transgenic mice, we further unveil that TDP-43 downregulates Parkin mRNA, which involves an unidentified, intron-independent mechanism and requires the RNA-binding and the protein-protein interaction functions of TDP-43. Unlike Parkin, TDP-43 does not regulate PINK1 at an RNA level. Instead, excess of TDP-43 causes cytosolic accumulation of cleaved PINK1 due to impaired proteasomal activity, leading to compromised mitochondrial functions. Consistent with the alterations at the molecular and cellular levels, we show that transgenic upregulation of Parkin but downregulation of PINK1 suppresses TDP-43-induced degenerative phenotypes in a Drosophila model of ALS. Together, these findings highlight the challenge associated with the heterogeneity and complexity of ALS pathogenesis, while pointing to Parkin-PINK1 as a common pathway that may be differentially misregulated in TDP-43 proteinopathy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA