Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(3): 1753-1768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775721

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.


Assuntos
Axônios , Peixe-Zebra , Animais , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Peixe-Zebra/metabolismo
2.
Opt Lett ; 46(11): 2778-2781, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061111

RESUMO

We report a watt-level mid-infrared (mid-IR) superfluorescent fiber source from ${{\rm Er}^{3 +}}$-doped ZBLAN fiber near 3 µm spectral range. With the power amplifier configuration, the mid-IR superfluorescent fiber source with power up to 1.85 W has been delivered successfully with slope efficiency about 18.6%. The experimental results may pave an avenue toward a high-power, high-temporal-stability superfluorescent source for versatile mid-IR applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA