Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 175: 113719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128985

RESUMO

Owing to the short picking period of the fresh Zanthoxylum bungeanum, the postharvest drying has become an essential operation before the storage and transportation of Z. bungeanum. To explore the effects of drying methods on volatile characteristics, the volatilomic profiling of five different dried Z. bungeanum was investigated by E-nose, HS-SPME-GC/MS, GC-IMS in combination with chemometrics. The results indicated that W1W, W2W and W5S sensors within E-nose analysis showed the strongest responses in both fresh and dried Z. bungeanum. According to the identification of volatile organic compounds (VOCs), terpenes, esters and alcohols played the major roles in the volatile formation of the fresh and dried Z. bungeanum. The samples derived from hot air drying showed the relatively similar features with the fresh sample based on the relative abundances of these major VOCs. According to the results of multiple factor analysis (MFA), GC-IMS showed the strongest ability in distinguishing the fresh and different dried samples. Compared with the high levels of terpenes in fresh group, the significant increasement of terpene alcohols and terpene esters from the degradation and transformation of bound terpenoids was the main characteristics of all dried Z. bungeanum. Using the GC-IMS datasets, a weighted correlation network analysis (WCNA) model was constructed to clarify the VOC characteristics in all detetected samples. Thereinto, 6 significantly correlated modules were identified in fresh and five different dried samples. Additionally, a total of 23 hub VOCs can be recognized as the potential biomarkers for better distinguishing the fresh and five different dried Z. bungeanum.


Assuntos
Compostos Orgânicos Voláteis , Zanthoxylum , Quimiometria , Terpenos/análise , Álcoois/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Ésteres/análise
2.
Plant Cell Environ ; 43(7): 1766-1778, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32266975

RESUMO

Norway spruce is a conifer storing large amounts of terpenoids in resin ducts of various tissues. Parts of the terpenoids stored in needles can be emitted together with de novo synthesized terpenoids. Since previous studies provided hints on xylem transported terpenoids as a third emission source, we tested if terpenoids are transported in xylem sap of Norway spruce. We further aimed at understanding if they might contribute to terpenoid emission from needles. We determined terpenoid content and composition in xylem sap, needles, bark, wood and roots of field grown trees, as well as terpenoid emissions from needles. We found considerable amounts of terpenoids-mainly oxygenated compounds-in xylem sap. The terpenoid concentration in xylem sap was relatively low compared with the content in other tissues, where terpenoids are stored in resin ducts. Importantly, the terpenoid composition in the xylem sap greatly differed from the composition in wood, bark or roots, suggesting that an internal transport of terpenoids takes place at the sites of xylem loading. Four terpenoids were identified in xylem sap and emissions, but not within needle tissue, suggesting that these compounds are likely derived from xylem sap. Our work gives hints that plant internal transport of terpenoids exists within conifers; studies on their functions should be a focus of future research.


Assuntos
Transporte Biológico , Picea/metabolismo , Terpenos/metabolismo , Xilema/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
3.
Tree Physiol ; 37(12): 1648-1658, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036462

RESUMO

Douglas fir (Pseudotsuga menziesii) is a conifer species that stores large amounts of terpenoids, mainly monoterpenoids in resin ducts of various tissues. The effects of drought on stored leaf terpenoid concentrations in trees are scarcely studied and published data are partially controversial, since reduced, unaffected or elevated terpenoid contents due to drought have been reported. Even less is known on the effect of drought on root terpenoids. In the present work, we investigated the effect of reduced water availability on the terpenoid content in roots and needles of Douglas fir seedlings. Two contrasting Douglas fir provenances were studied: an interior provenance (var. glauca) with assumed higher drought resistance, and a coastal provenance (var. menziesii) with assumed lower drought resistance. We tested the hypothesis that both provenances show specific patterns of stored terpenoids and that the patterns will change in response to drought in both, needles and roots. We further expected stronger changes in the less drought tolerant coastal provenance. For this purpose, we performed an experiment under controlled conditions, in which the trees were exposed to moderate and severe drought stress. According to our expectations, the study revealed clear provenance-specific terpenoid patterns in needles. However, such patterns were not detected in the roots. Drought slightly increased the needle terpenoid contents of the coastal but not of the interior provenance. We also observed increased terpenoid abundance mainly in roots of the moderately stressed coastal provenance. Overall, from the observed provenance-specific reactions with increased terpenoid levels in trees of the coastal origin in response to drought, we conclude on functions of terpenoids for abiotic stress tolerance that might be fulfilled by other, constitutively expressed mechanisms in drought-adapted interior provenances.


Assuntos
Secas , Pseudotsuga/fisiologia , Plântula/fisiologia , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA