Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(31): 22449-22458, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010905

RESUMO

Core-shell particle formation via co-assembly of AB diblock copolymers and nanoparticles in 3D soft confinement was studied using a simulated annealing method. Several sequences of soft confinement-induced core-shell particles were predicted as functions of the volume fraction of the nanoparticle to core-shell particles, the incompatibility between blocks, the volume fractions of A-blocks, the chain length of AB diblocks, the eccentricity of the nanoparticle, and the initial concentration of copolymers. Simulation results demonstrate that those factors are able to tune the morphology of the core-shell particles precisely. Calculated data indicate that the copolymer chain was located between a hard confinement wall composed of the nanoparticle and a soft confinement wall composed of solvents, and the arrangement direction of the copolymer chains was in a competitive equilibrium between the two. We anticipate that this work will be helpful and instructive for the preparation of polymer shells with different structures and shapes, as well as the study of self-assembly morphology of copolymers in a complex confinement systems.

2.
Nano Lett ; 23(23): 11043-11050, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38032845

RESUMO

Layered MXene nanofluidic membranes still face the problems of low mechanical property, poor ion selectivity, and low output power density. In this work, we successfully constructed heterostructured membranes with the combination of the layered channels of the MXene layer on the top and the nanoscale poly(p-phenylene-benzodioxazole) nanofiber (PBONF) layer on the bottom through a stepwise filtration method. The as-prepared MXene/PBONF-50 heterogeneous membrane exhibits high mechanical properties (strength of 221.6 MPa, strain of 3.2%), high ion selectivity of 0.87, and an excellent output power density of 15.7 W/m2 at 50-fold concentration gradient. Excitingly, the heterogeneous membrane presents a high power density of 6.8 W/m2 at a larger testing area of 0.79 mm2 and long-term stability. This heterogeneous membrane construction provides a viable strategy for the enhancement of mechanical properties and osmotic energy conversion of 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA