RESUMO
RATIONALE AND OBJECTIVES: The aim of this study was to develop a deep learning radiomics nomogram (DLRN) based on B-mode ultrasound (BMUS) and color doppler flow imaging (CDFI) images for preoperative assessment of lymphovascular invasion (LVI) status in invasive breast cancer (IBC). MATERIALS AND METHODS: In this multicenter, retrospective study, 832 pathologically confirmed IBC patients were recruited from eight hospitals. The samples were divided into training, internal test, and external test sets. Deep learning and handcrafted radiomics features reflecting tumor phenotypes on BMUS and CDFI images were extracted. The BMUS score and CDFI score were calculated after radiomics feature selection. Subsequently, a DLRN was developed based on the scores and independent clinic-ultrasonic risk variables. The performance of the DLRN was evaluated for calibration, discrimination, and clinical usefulness. RESULTS: The DLRN predicted the LVI with accuracy, achieving an area under the receiver operating characteristic curve of 0.93 (95% CI 0.90-0.95), 0.91 (95% CI 0.87-0.95), and 0.91 (95% CI 0.86-0.94) in the training, internal test, and external test sets, respectively, with good calibration. The DLRN demonstrated superior performance compared to the clinical model and single scores across all three sets (p < 0.05). Decision curve analysis and clinical impact curve confirmed the clinical utility of the model. Furthermore, significant enhancements in net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indicated that the two scores could serve as highly valuable biomarkers for assessing LVI. CONCLUSION: The DLRN exhibited strong predictive value for LVI in IBC, providing valuable information for individualized treatment decisions.
Assuntos
Neoplasias da Mama , Aprendizado Profundo , Invasividade Neoplásica , Nomogramas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Idoso , Ultrassonografia Mamária/métodos , Ultrassonografia Doppler em Cores/métodos , Metástase Linfática/diagnóstico por imagem , RadiômicaRESUMO
Over the past few years, developments in artificial intelligence (AI), especially in radiomics and deep learning, have enabled the extraction of pathophysiology-related information from varied medical imaging and are progressively transforming medical practice. AI applications are extending into domains previously thought to be accessible only to human experts. Recent research has demonstrated that ultrasound-derived radiomics and deep learning represent an enticing opportunity to benefit preoperative evaluation and prognostic monitoring of diffuse and focal liver disease. This review summarizes the application of radiomics and deep learning in ultrasound liver imaging, including identifying focal liver lesions and staging of liver fibrosis, as well as the evaluation of pathobiological properties of malignant tumors and the assessment of recurrence and prognosis. Besides, we identify important hurdles that must be overcome while also discussing the challenges and opportunities of radiomics and deep learning in clinical applications.