Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2402402, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949051

RESUMO

Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.

2.
Adv Sci (Weinh) ; : e2400196, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978353

RESUMO

Osteoarthritis is a highly prevalent progressive joint disease that still requires an optimal therapeutic approach. Intermittent fasting is an attractive dieting strategy for improving health. Here this study shows that intermittent fasting potently relieves medial meniscus (DMM)- or natural aging-induced osteoarthritic phenotypes. Osteocytes, the most abundant bone cells, secrete excess neuropeptide Y (NPY) during osteoarthritis, and this alteration can be altered by intermittent fasting. Both NPY and the NPY-abundant culture medium of osteocytes (OCY-CM) from osteoarthritic mice possess pro-inflammatory, pro-osteoclastic, and pro-neurite outgrowth effects, while OCY-CM from the intermittent fasting-treated osteoarthritic mice fails to induce significant stimulatory effects on inflammation, osteoclast formation, and neurite outgrowth. Depletion of osteocyte NPY significantly attenuates DMM-induced osteoarthritis and abolishes the benefits of intermittent fasting on osteoarthritis. This study suggests that osteocyte NPY is a key contributing factor in the pathogenesis of osteoarthritis and intermittent fasting represents a promising nonpharmacological antiosteoarthritis method by targeting osteocyte NPY.

3.
J Colloid Interface Sci ; 673: 19-25, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870664

RESUMO

Developing highly active and durable non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER) is crucial in achieving efficient energy conversion. Herein, we reported a CoNiAl0.5O/NF nanofilament that exhibits higher OER activity than previously reported IrO2-based catalysts in alkaline solution. The as-synthesized CoNiAl0.5O/NF catalyst demonstrates a low overpotential of 230 mV at a current density of 100 mA cm-2, indicating its high catalytic efficiency. Furthermore, the catalyst exhibits a Tafel slope of 26 mV dec-1, suggesting favorable reaction kinetics. The CoNiAl0.5O/NF catalyst exhibits impressive stability, ensuring its potential for practical applications. Detailed characterizations reveal that the enhanced activity of CoNiAl0.5O/NF can be attributed to the electronic modulation achieved through Al3+ incorporation, which promotes the emergence of higher-valence Ni metal, facilitating nanofilament formation and improving mass transport and charge transfer processes. The synergistic effect between nanofilaments and porous nickel foam (NF) substrate significantly enhances the electrical conductivity of this catalyst material. This study highlights the significance of electronic structures for improving the activity of cost-effective and non-precious metal-based electrocatalysts for the OER.

4.
Angew Chem Int Ed Engl ; 60(16): 8798-8802, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33512043

RESUMO

Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/cerium oxide (Bi/CeOx ) catalyst, which exhibits not only high current density (149 mA cm-2 ), but also unprecedented production rate (2600 µmol h-1 cm-2 ) with high Faradaic efficiency (FE, 92 %) for HCOOH generation in aqueous media. Furthermore, Bi/CeOx also shows favorable stability over 34 h. We hope this work could offer an attractive and promising strategy to develop efficient catalysts for CO2 electroreduction with superior activity and desirable stability.

5.
Adv Mater ; 30(14): e1706194, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473227

RESUMO

Conversion of carbon dioxide (CO2 ) into valuable chemicals, especially liquid fuels, through electrochemical reduction driven by sustainable energy sources, is a promising way to get rid of dependence on fossil fuels, wherein developing of highly efficient catalyst is still of paramount importance. In this study, as a proof-of-concept experiment, first a facile while very effective protocol is proposed to synthesize amorphous Cu NPs. Unexpectedly, superior electrochemical performances, including high catalytic activity and selectivity of CO2 reduction to liquid fuels are achieved, that is, a total Faradaic efficiency of liquid fuels can sum up to the maximum value of 59% at -1.4 V, with formic acid (HCOOH) and ethanol (C2 H6 O) account for 37% and 22%, respectively, as well as a desirable long-term stability even up to 12 h. More importantly, this work opens a new avenue for improved electroreduction of CO2 based on amorphous metal catalysts.

6.
J Environ Sci (China) ; 15(3): 401-12, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12938994

RESUMO

By developing a GDMOD model to estimate the environmental externalities associated with electricity generation, this project provides a detailed analysis of the damages and costs caused by different pollutants at varying distances from the Mawan Electricity Plant in Shenzhen, China. The major findings of this study can be summarized that (1) environmental damages caused by electricity production are large and are mainly imposed on regions far away from the electricity plant; (2) air pollution is the most significant contributor to the total damages, and SO2, NO(x), and particulate matter are the three major pollutants with highest damages; (3) the damages caused per unit of particulate,NO(x), and SO2 emissions are much higher than pollution treatment and prevention costs. The research results of this project showed that China needs to have a more effective levy system on SO2, and a more manageable electricity tariff mechanism to internalize the environmental externalities. The results have also implications for pollution control strategies, compensation schemes as well an emission trading arrangements.


Assuntos
Poluentes Atmosféricos/economia , Carvão Mineral/economia , Eletricidade , Modelos Teóricos , Poluição do Ar/prevenção & controle , China , Análise Custo-Benefício , Meio Ambiente , Incineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA