Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Microb Cell Fact ; 23(1): 128, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704580

RESUMO

BACKGROUND: Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS: In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS: Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.


Assuntos
Antraquinonas , Enedi-Inos , Engenharia Metabólica , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Engenharia Metabólica/métodos , Antraquinonas/metabolismo , Enedi-Inos/metabolismo , Família Multigênica , Vias Biossintéticas
2.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731473

RESUMO

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Assuntos
Família Multigênica , Peptídeo Sintases , Policetídeo Sintases , Streptomyces , Streptomyces/genética , Streptomyces/enzimologia , Streptomyces/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Policetídeo Sintases/química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química
3.
Foods ; 13(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38540830

RESUMO

The purpose of this study was to evaluate the efficacy of ethanol extracts from Torreya grandis seed (EST) as a functional food in hyperuricemia mice. We investigated EST by analyzing its chemical composition. Using a mouse model of hyperuricemia induced by potassium oxonate (PO), we evaluated the effects of EST on uric acid (UA) production, inflammation-related cytokines, and gut microbiota diversity. The primary constituents of EST consist of various flavonoids and phenolic compounds known for their antioxidant and anti-inflammatory properties in vitro. Notably, our findings demonstrate that EST significantly reduced UA levels in hyperuricemia mice by 71.9%, which is comparable to the effects observed with xanthine treatment. Moreover, EST exhibited an inhibitory effect on xanthine oxidase activity in mouse liver, with an IC50 value of 20.90 µg/mL (36%). EST also provided protective effects to the mouse kidneys by modulating oxidative stress and inflammation in damaged tissues, while also enhancing UA excretion. Finally, EST influenced the composition of the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Akkermansia muciniphila, Corynebacterium parvum, Enterorhabdus, Muribaculaceae, Marvinbryantia, and Blautia. In summary, our research unveils additional functions of Torreya grandis and offers new insights into the future of managing hyperuricemia.

4.
J Med Chem ; 67(6): 4624-4640, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38483132

RESUMO

Dynemicin A has been the sole prototypical anthraquinone-fused enediyne (AFE) explored since its discovery in 1989. This study investigates the distinct DNA binding and cleavage mechanisms of emerging AFEs, represented by tiancimycins and yangpumicins, along with semisynthetic analogues. Our findings reveal their potent cytotoxicity against various tumor cell lines, while 18-methoxy tiancimycin A treatment could significantly suppress breast tumor growth with minimal toxicity. One of the most potent AFEs, i.e., tiancimycin A, preferentially targets DNA sequences 5'-ATT, 5'-CTT, 5'-GAA, 5'-GAT, and 5'-TTA. Molecular dynamics simulations suggest that emerging AFEs intercalate deeper into AT-rich DNA base pairs compared to dynemicin A. Importantly, tiancimycin A may equilibrate between insertional and intercalative modes without deintercalation, enabling selective cleavage of T and A bases. This study underscores how subtle structural variations among AFEs significantly influence their DNA recognition and cleavage, facilitating future design of novel AFEs as potent and selective payloads for antibody-drug conjugates.


Assuntos
DNA , Enedi-Inos , Enedi-Inos/química , Antraquinonas/química , Antibióticos Antineoplásicos/química
5.
Adv Sci (Weinh) ; 11(17): e2307865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355309

RESUMO

Although natural products are essential sources of small-molecule antitumor drugs, some can exert substantial toxicities, limiting their clinical utility. Anthraquinone-fused enediyne natural products are remarkably potent antitumor drug candidates, and uncialamycin and tiancimycin (TNM) A are under development as antibody-drug conjugates. Herein, a novel drug delivery system is introduced for TNM A using anti-human epidermal growth factor receptor 2 (HER2) immunoliposomes (ILs). Trastuzumab-coated TNM A-loaded ILs (HER2-TNM A-ILs) is engineered with an average particle size of 182.8 ± 2.1 nm and a zeta potential of 1.75 ± 0.12 mV. Compared with liposomes lacking trastuzumab, HER2-TNM A-ILs exhibited selective toxicity against HER2-positive KPL-4 and SKBR3 cells. Coumarin-6, a fluorescent TNM A surrogate, is encapsulated within anti-HER2 ILs; the resultant ILs have enhanced cellular uptake in KPL-4 and SKBR3 cells when compared with control liposomes. Furthermore, ILs loaded with more Cy5.5 accumulated in KPL-4 mouse tumors. A single HER2-TNM A-IL dose (0.02 mg kg-1) suppressed the growth of HER2-positive KPL-4 mouse tumors without apparent toxicity. This study not only provides a straightforward method for the effective delivery of TNM A against HER2-positive breast tumors but also underscores the potential of IL-based drug delivery systems when employing highly potent cytotoxins as payloads.


Assuntos
Antraquinonas , Antineoplásicos , Sistemas de Liberação de Medicamentos , Enedi-Inos , Lipossomos , Receptor ErbB-2 , Animais , Camundongos , Enedi-Inos/química , Enedi-Inos/farmacologia , Receptor ErbB-2/imunologia , Antraquinonas/farmacologia , Antraquinonas/administração & dosagem , Humanos , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Feminino , Modelos Animais de Doenças , Trastuzumab/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia
6.
Appl Microbiol Biotechnol ; 108(1): 18, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170317

RESUMO

Exploration of high-yield mechanism is important for further titer improvement of valuable antibiotics, but how to achieve this goal is challenging. Tiancimycins (TNMs) are anthraquinone-fused enediynes with promising drug development potentials, but their prospective applications are limited by low titers. This work aimed to explore the intrinsic high-yield mechanism in previously obtained TNMs high-producing strain Streptomyces sp. CB03234-S for the further titer amelioration of TNMs. First, the typical ribosomal RpsL(K43N) mutation in CB03234-S was validated to be merely responsible for the streptomycin resistance but not the titer improvement of TNMs. Subsequently, the combined transcriptomic, pan-genomic and KEGG analyses revealed that the significant changes in the carbon and amino acid metabolisms could reinforce the metabolic fluxes of key CoA precursors, and thus prompted the overproduction of TNMs in CB03234-S. Moreover, fatty acid metabolism was considered to exert adverse effects on the biosynthesis of TNMs by shunting and reducing the accumulation of CoA precursors. Therefore, different combinations of relevant genes were respectively overexpressed in CB03234-S to strengthen fatty acid degradation. The resulting mutants all showed the enhanced production of TNMs. Among them, the overexpression of fadD, a key gene responsible for the first step of fatty acid degradation, achieved the highest 21.7 ± 1.1 mg/L TNMs with a 63.2% titer improvement. Our studies suggested that comprehensive bioinformatic analyses are effective to explore metabolic changes and guide rational metabolic reconstitution for further titer improvement of target products. KEY POINTS: • Comprehensive bioinformatic analyses effectively reveal primary metabolic changes. • Primary metabolic changes cause precursor enrichment to enhance TNMs production. • Strengthening of fatty acid degradation further improves the titer of TNMs.


Assuntos
Antibacterianos , Streptomyces , Antibacterianos/metabolismo , Streptomyces/metabolismo , Estreptomicina/farmacologia , Perfilação da Expressão Gênica , Ácidos Graxos/metabolismo , Engenharia Metabólica/métodos
7.
J Nat Prod ; 86(7): 1870-1877, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37462318

RESUMO

A Tripterygium wilfordii endophyte, Streptomyces sp. CB04723, was shown to produce an unusually highly reduced cytotoxic cinnamoyl lipid, tripmycin A (1). Structure-activity relationship studies revealed that both the cinnamyl moiety and the saturated fatty acid side chain are indispensable to the over 400-fold cytotoxicity improvement of 1 against the triple-negative breast cancer cell line MDA-MB-231 compared to 5-(2-methylphenyl)-4-pentenoic acid (2). Bioinformatical analysis, gene inactivation, and overexpression revealed that Hxs15 most likely acted as an enoyl reductase and was involved with the side chain reduction of 1, which provides a new insight into the biosynthesis of cinnamoyl lipids.


Assuntos
Streptomyces , Inativação Gênica , Lipídeos , Streptomyces/química , Cinamatos/química
8.
Nat Prod Res ; : 1-7, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37125816

RESUMO

An undescribed α-pyrone diaporpyrone E (1), and three known nucleotides, 5'-O-acetyl uridine (2), 5'-O-acetyl thymidine (3), and adenine (4), were identified from Diaporthe sp. CB10100, an endophytic fungus isolated from the medicinal plant Sinomenium acutum. The structure of 1 was determined by extensive analysis of its HRMS, 1D and 2D NMR spectroscopic data, as well as electronic circular dichroism calculations and comparison. The in vitro cytotoxic and antibacterial assays of 1 revealed that it has a 30.2% inhibitory effect on HepG2 cells at 50 µM, while no antibacterial activities against Staphylococcus aureus and Klebsiella pneumoniae at 64 µg/mL.

9.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110828

RESUMO

Lobophorins (LOBs) are a growing family of spirotetronate natural products with significant cytotoxicity, anti-inflammatory, and antibacterial activities. Herein, we report the transwell-based discovery of Streptomyces sp. CB09030 from a panel of 16 in-house Streptomyces strains, which has significant anti-mycobacterial activity and produces LOB A (1), LOB B (2), and LOB H8 (3). Genome sequencing and bioinformatic analyses revealed the potential biosynthetic gene cluster (BGC) for 1-3, which is highly homologous with the reported BGCs for LOBs. However, the glycosyltransferase LobG1 in S. sp. CB09030 has certain point mutations compared to the reported LobG1. Finally, LOB analogue 4 (O-ß-D-kijanosyl-(1→17)-kijanolide) was obtained through an acid-catalyzed hydrolysis of 2. Compounds 1-4 showed different antibacterial activities against Mycobacterium smegmatis and Bacillus subtilis, which revealed the varying roles of different sugars in their antibacterial activities.


Assuntos
Streptomyces , Streptomyces/química , Macrolídeos/química , Antibacterianos/química , Sequência de Bases , Família Multigênica
10.
Int J Pharm ; 635: 122707, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36764418

RESUMO

There is a great interest to develop co-amorphous drug delivery systems to enhance the solubility of biopharmaceutics classification system (BCS) class II and IV drugs. However, most reported systems only resulted in severalfold solubility improvement. Tranilast (TRA) is an anti-allergic drug used to treat bronchial asthma and allergic rhinitis. It is a BCS class II drug and its poor aqueous solubility affects its absorption in vivo. To address this issue, a natural alkaloid matrine (MAR) with interesting biological activities was chosen to form a co-amorphous system with TRA, based on the solubility parameter and phase solubility experiment. The TRA-MAR drug-drug co-amorphous system was prepared by the solvent evaporation method, and further characterized by powder X-ray diffraction and modulated temperature differential scanning calorimetry. Fourier transform infrared spectroscopy, FT-Raman, and X-ray photoelectron spectroscopy revealed the formation of salt and the presence of strong intermolecular interactions in the TRA-MAR co-amorphous system, which are also supported by molecular dynamics simulations, showing ionic and hydrogen bonding interactions. This co-amorphous system exhibited excellent physical stability at both 25 °C and 40 °C under anhydrous silica gel condition. Finally, co-amorphous TRA-MAR showed greatly enhanced solubility (greater than 100-fold) and rapid release behavior in the vitro release experiments. NMR spectroscopy revealed the strong intermolecular interactions between TRA and MAR in both DMSO­d6 and D2O. Our study resulted in a TRA-MAR co-amorphous drug system with significant solubility improvement and showcased the great potential to improve the dissolution behaviors of BCS class II and IV drugs through the co-amorphization approach.


Assuntos
Matrinas , ortoaminobenzoatos , Solubilidade , Estabilidade de Medicamentos , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
11.
Pharmaceutics ; 14(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36559313

RESUMO

Sinomenine (SIN) is a benzyltetrahydroisoquinoline-type alkaloid isolated from the dried plant root and stem of Sinomenium acutum (Thumb.) Rehd.et Wils, which shows potent anti-inflammatory and analgesic effects. As a transforming disease-modifying anti-rheumatic drug, SIN has been used to treat rheumatoid arthritis over twenty-five years in China. In recent years, SIN is also in development for use against other disorders, including colitis, pain, traumatic brain injury, and uveitis. However, its commercial hydrochloride (SIN-HCl) shows low oral bioavailability and certain allergic reactions in patients, due to the release of histamine. Therefore, a large number of pharmaceutical strategies have been explored to address these liabilities, such as prolonging release behaviors, enhancing skin permeation and adsorption for transdermal delivery, targeted SIN delivery using new material or conjugates, and co-amorphous technology. This review discusses these different delivery strategies and approaches employed to overcome the limitations of SIN for its efficient delivery, in order to achieve improved bioavailability and reduced side effects. The potential advantages and limitations of SIN delivery strategies are elaborated along with discussions of potential future SIN drug development strategies.

12.
Chem Sci ; 13(45): 13475-13481, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36507168

RESUMO

The identification and characterization of enediyne polyketide synthases (PKSEs) revealed that PKSE-bound polyene is a common intermediate, while its subsequent tailoring steps to enediyne cores remain obscure. Herein, we report pentaene polyols 5-7 and cinnamic acid derivatives 8 and 9 biosynthesized from an activated enediyne biosynthetic gene cluster in Streptomyces sp. CB02130. The C-1027 pksE could partially complement production of these polyene polyols in a CB02130 mutant where the native pksE is inactivated. The yields of 5-7 were improved by increasing the cellular pool of l-Phe through either gene inactivation of a prephenate dehydrogenase WlsPDH or supplementation of l-Phe. A flexible ammonia lyase WlsC4 is responsible for biosynthesis of 8 and 9 from l-Phe. The co-localization of wlsPDH and PKSE gene cassette supports their close evolutionary relationships and an enediyne genome mining strategy using WlsPDH. These findings not only provide a facile approach to activate silent enediyne BGCs, but suggest that a polyene epoxide intermediate may be formed for construction of 9-membered enediyne macrocycles.

13.
Mol Pharm ; 19(11): 4370-4381, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36251509

RESUMO

There is strong interest to develop affordable treatments for the infection-associated rheumatoid arthritis (RA). Here, we present a drug-drug co-amorphous strategy against RA and the associated bacterial infection by the preparation and characterization of two co-amorphous systems of sinomenine (SIN) with platensimycin (PTM) or sulfasalazine (SULF), two potent antibiotics. Both of them were comprehensively characterized using powder X-ray diffraction, temperature-modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The co-amorphous forms of SIN-PTM and SIN-SULF exhibited high Tgs at 139.10 ± 1.0 and 153.3 ± 0.2 °C, respectively. After 6 months of accelerated tests and 1 month of drug-excipient compatibility experiments, two co-amorphous systems displayed satisfactory physical stability. The formation of salt and strong intermolecular interactions between SIN and PTM or SULF, as well as the decreased molecular mobility in co-amorphous systems, may be the intrinsic mechanisms underlying the excellent physical stability of both co-amorphous systems. In dissolution tests, two co-amorphous systems displayed distinct reduced SIN-accumulative releases (below 20% after 6 h of release experiments), which may lead to its poor therapeutic effect. Hence, we demonstrated a controlled release strategy for SIN by the addition of a small percentage of polymers and a small-molecule surfactant to these two co-amorphous samples as convenient drug excipients, which may also be used to improve the unsatisfactory dissolution behaviors of the previously reported SIN co-amorphous systems. Several hydrogen bonding interactions between SIN and PTM or SULF could be identified in NMR experiments in DMSO-d6, which may be underlying reasons of decreased dissolution behaviors of both co-amorphous forms. These drug-drug co-amorphous systems could be a potential strategy for the treatment of infection-associated RA.


Assuntos
Excipientes , Sulfassalazina , Excipientes/química , Estabilidade de Medicamentos , Solubilidade , Varredura Diferencial de Calorimetria , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Microb Cell Fact ; 21(1): 188, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088456

RESUMO

BACKGROUND: The anthraquinone-fused 10-membered enediynes (AFEs), represented by tiancimycins (TNMs), possess a unique structural feature and promising potentials as payloads of antitumor antibody-drug conjugates. Despite many efforts, the insufficient yields remain a practical challenge for development of AFEs. Recent studies have suggested a unified basic biosynthetic route for AFEs, those core genes involved in the formation of essential common AFE intermediates, together with multiple regulatory genes, are highly conserved among the reported biosynthetic gene clusters (BGCs) of AFEs. The extreme cytotoxicities of AFEs have compelled hosts to evolve strict regulations to control their productions, but the exact roles of related regulatory genes are still uncertain. RESULTS: In this study, the genetic validations of five putative regulatory genes present in the BGC of TNMs revealed that only three (tnmR1, tnmR3 and tnmR7) of them were involved in the regulation of TNMs biosynthesis. The bioinformatic analysis also revealed that they represented three major but distinct groups of regulatory genes conserved in all BGCs of AFEs. Further transcriptional analyses suggested that TnmR7 could promote the expressions of core enzymes TnmD/G and TnmN/O/P, while TnmR3 may act as a sensor kinase to work with TnmR1 and form a higher class unconventional orphan two-component regulatory system, which dynamically represses the expressions of TnmR7, core enzymes TnmD/G/J/K1/K2 and auxiliary proteins TnmT2/S2/T1/S1. Therefore, the biosynthesis of TNMs was stringently restricted by this cascade regulatory network at early stage to ensure the normal cell growth, and then partially released at the stationary phase for product accumulation. CONCLUSION: The pathway-specific cascade regulatory network consisting with TnmR3/R1 and TnmR7 was deciphered to orchestrate the production of TNMs. And it could be speculated as a common regulatory mechanism for productions of AFEs, which shall provide us new insights in future titer improvement of AFEs and potential dynamic regulatory applications in synthetic biology.


Assuntos
Streptomyces , Enedi-Inos/química , Enedi-Inos/metabolismo , Genes Reguladores , Família Multigênica , Proteínas/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
15.
Eur J Pharm Biopharm ; 179: 126-136, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36087879

RESUMO

Co-amorphous technology is an emerging approach for pharmaceutical engineering of drugs and drug leads with improved physicochemical properties and bioavailability. Platensimycin (PTM) is a promising natural antibiotic lead that acts on bacterial fatty acid synthase and exhibits excellent antibacterial activity. Despite great strides to improve its poor pharmacokinetics by medicinal chemistry and nanotechnology, there are no convenient oral delivery systems developed. Here, a co-amorphous system of PTM and berberine chloride (BCL) was developed for oral delivery of PTM. Co-amorphous PTM-BCL was prepared by rotary vacuum evaporation method, and systematically characterized by powder X-ray diffraction, temperature modulated differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Compared with PTM or BCL alone, the equilibrium solubility and dissolution rate of both of them in the co-amorphous systems decreased significantly, showing the characteristics of sustained release. The molecular interactions between PTM and BCL were mediated by strong charged-mediated hydrogen bonds, based on FTIR, XPS, and NMR-based techniques. The co-amorphous PTM-BCL system showed excellent physiochemical stability at room and elevated (40 °C) temperature under dry conditions. The combination of PTM and BCL showed increased killing of a clinical isolated methicillin-resistant Staphylococcus aureus strain in killing checkerboard assays. Finally, co-amorphous PTM-BCL exhibited 2- or 3-fold longer half-life in rats than that of crystalline and amorphous PTM upon oral administration, respectively. Our study suggests a rational approach to realize the full potential of potent antibiotic PTM, which may be conveniently adapted for engineering of other important pharmaceutics.


Assuntos
Berberina , Staphylococcus aureus Resistente à Meticilina , Adamantano , Aminobenzoatos , Anilidas , Animais , Antibacterianos/farmacologia , Varredura Diferencial de Calorimetria , Cloretos , Preparações de Ação Retardada , Estabilidade de Medicamentos , Ácido Graxo Sintases , Meia-Vida , Pós , Ratos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
17.
J Antimicrob Chemother ; 77(10): 2840-2849, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35848795

RESUMO

OBJECTIVES: The rapid development of drug-resistant bacteria, especially MRSA, poses severe threats to global public health. Adoption of antibiotic adjuvants has proved to be one of the efficient ways to solve such a crisis. Platensimycin and surfactin were comprehensively studied to combat prevalent MRSA skin infection. METHODS: MICs of platensimycin, surfactin or their combinations were determined by resazurin assay, while the corresponding MBCs were determined by chequerboard assay. Growth inhibition curves and biofilm inhibition were determined by OD measurements. Membrane permeability analysis was conducted by propidium iodide staining, and morphological characterizations were performed by scanning electron microscopy. Finally, the therapeutic effects on MRSA skin infections were evaluated in scald-model mice. RESULTS: The in vitro assays indicated that surfactin could significantly improve the antibacterial performance of platensimycin against MRSA, especially the bactericidal activity. Subsequent mechanistic studies revealed that surfactin not only interfered with the biofilm formation of MRSA, but also disturbed their cell membranes to enhance membrane permeability, and therefore synergistically ameliorated MRSA cellular uptake of platensimycin. Further in vivo assessment validated the synergistic effect of surfactin on platensimycin and the resultant enhancement of therapeutical efficacy in MRSA skin-infected mice. CONCLUSIONS: The combination of effective and biosafe surfactin and platensimycin could be a promising and efficient treatment for MRSA skin infection, which could provide a feasible solution to combat the major global health threats caused by MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Dermatopatias Infecciosas , Adamantano , Aminobenzoatos , Anilidas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Celulite (Flegmão)/tratamento farmacológico , Lipopeptídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Propídio/metabolismo , Propídio/farmacologia
18.
Org Biomol Chem ; 20(25): 5066-5070, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35703354

RESUMO

Three siderophores mirubactins B-D (4-6) were identified as the degradation products of previously isolated mirubactin (1). Their structures were revealed by HR-ESI-MS/MS, NMR analyses, and density functional calculations, among which 4 contains an unusual cyclic amidine functionality. Cyclic voltammetry showed that 5 and 6 have reduced iron complexing capacity. Mirubactin (1) and Fe(III) could also form a stable complex, which may be an ingenious approach to compete for iron acquisition by the producing organisms.


Assuntos
Compostos Férricos , Sideróforos , Compostos Férricos/química , Ácidos Hidroxâmicos , Ferro , Sideróforos/química , Espectrometria de Massas em Tandem
19.
Antibiotics (Basel) ; 11(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453177

RESUMO

Type II fatty acid synthases are promising drug targets against major bacterial pathogens. Platensimycin (PTM) is a potent inhibitor against ß-ketoacyl-[acyl carrier protein] synthase II (FabF) and ß-ketoacyl-[acyl carrier protein] synthase I (FabB), while the poor pharmacokinetics has prevented its further development. In this work, thirty-two PTM derivatives were rapidly prepared via Heck, Sonogashira, and one-pot Sonogashira/cycloaddition cascade reactions based on the Gram-scale synthesis of 6-iodo PTM (4). About half of the synthesized compounds were approximately equipotent to PTM against the tested Staphylococcus aureus strains. Among them, the representative compounds 4, A4, and B8 exhibited different plasma protein binding affinity or stability in the human hepatic microsome assay and showed improved in vivo efficacy over PTM in a mouse peritonitis model. In addition, A4 was also effective in an S. aureus-infected skin mouse model. Our study not only significantly expands the known PTM derivatives with improved antibacterial activities in vivo, but showcased that C-C cross-coupling reactions are useful tools to functionalize natural product drug leads.

20.
Mol Pharm ; 19(4): 1078-1090, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35290067

RESUMO

Enediyne natural products, including neocarzinostatin and calicheamicin γ1, are used in the form of a copolymer or antibody-drug conjugate to treat hepatomas and leukemia. Tiancimycin (TNM) A is a novel anthraquinone-fused enediyne that can rapidly and completely kill tumor cells. Herein, we encapsulated TNM A in liposomes (Lip-TNM A) and cyclic arginine-glycine-aspartate (cRGD)-functionalized liposomes (cRGD-Lip-TNM A) and demonstrated its antitumor activity using mouse xenografts. Because TNM A causes rapid DNA damage, cell cycle arrest, and apoptosis, these nanoparticles exhibited potent cytotoxicity against multiple tumor cells for 8 h. In B16-F10 and KPL-4 xenografts, both nanoparticles showed superior potency over doxorubicin and trastuzumab. However, cRGD-Lip-TNM A reduced the tumor weight more significantly than Lip-TNM A in B16-F10 xenografts, in which the αvß3-integrin receptors are significantly overexpressed in this melanoma. Lip-TNM A was slightly more active than cRGD-Lip-TNM A against KPL-4 xenografts, which probably reflected the difference of their in vivo fate in this mouse model. In a highly metastatic 4T1 tumor model, cRGD-Lip-TNM A reduced tumor metastasis induced by losartan, a tumor microenvironment-remodeling agent. These findings suggest that targeted delivery of enediynes with unique modes of action may enable more effective translation of anticancer nanomedicines.


Assuntos
Neoplasias da Mama , Melanoma , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Enedi-Inos , Feminino , Humanos , Lipossomos , Melanoma/tratamento farmacológico , Camundongos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA