Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38171485

RESUMO

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Regulação da Expressão Gênica de Plantas , Glycine max , Isoflavonas , Fenilalanina Amônia-Liase , Doenças das Plantas , Tylenchoidea , Glycine max/genética , Glycine max/parasitologia , Tylenchoidea/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Animais , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Resistência à Doença/genética , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
3.
Gene ; 898: 148080, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38101712

RESUMO

Bacillus simplex Sneb45 is a plant-growth-promoting rhizobacterium that promotes soybean growth and systemic resistance to cyst nematode. To investigate transcriptional changes in soybean roots in response to B. simplex Sneb45 treatment, transcriptome analysis and quantitative real-time PCR were conducted to detect and validate the differentially expressed genes (DEGs). In total, 19,109 DEGs were obtained. After B. simplex Sneb545 treatment, 970 and 1265 genes were up- and down-regulated at 5 days post-inoculation (dpi), respectively, and 142 and 47 genes were up- and down-regulated at 10 dpi, respectively, compared with untreated soybean roots. Functional annotation of DEGs indicated that B. simplex Sneb545 regulated soybean growth and defense against cyst nematode possibly through genes related to auxin, gibberellin, and NB-LRR protein. In addition, GO and KEGG enrichment analyses indicated that the DEGs were enriched in metabolism, signal transduction, and plant-pathogen interaction pathways. Moreover, the auxin and gibberellin contents were lower in B. simplex Sneb545-treated soybean roots than in untreated roots at 5 dpi. B. simplex Sneb545 possibly altered the expression of wound-induced protein and NAC transcription factor to regulate soybean growth and defense against cyst nematode. Our study provided deep insights into the alterations in soybean transcriptome after exposure to B. simplex Sneb45 and a theoretical basis for further exploring molecular functions underlying the biological control activity of B. simplex Sneb545.


Assuntos
Bacillus , Nematoides , Tylenchoidea , Animais , Glycine max/genética , Transcriptoma , Giberelinas/metabolismo , Perfilação da Expressão Gênica , Nematoides/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Tylenchoidea/genética
4.
J Agric Food Chem ; 71(46): 18059-18073, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948664

RESUMO

Ubiquitination genes are key components of plant responses to biotic stress. GmPUB20A, a ubiquitination gene, plays a negative role in soybean resistance to soybean cyst nematode (SCN). In this study, we employed high-throughput sequencing to investigate transcriptional changes in GmPUB20A overexpressing and RNA-interfering transgenic hairy roots. Totally, 7661 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that DEGs were significantly enriched in disease resistance and signal transduction pathways. In addition, silencing Glyma.15G021600 and Glyma.09G284700 by siRNA, the total number of nematodes was decreased by 33.48% and 27.47% than control plants, respectively. Further, GUS activity and reactive oxygen species (ROS) assays revealed that GmPUB20A, Glyma.15G021600, and Glyma.09G284700 respond to SCN parasitism and interfere with the accumulation of ROS in plant roots, respectively. Collectively, our study provides insights into the molecular mechanism of GmPUB20A in soybean resistance to SCN.


Assuntos
Cistos , Nematoides , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Tylenchoidea/fisiologia , Transcriptoma , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
5.
Front Plant Sci ; 14: 1179605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324719

RESUMO

Introduction: Root-knot nematode disease is one of the world's most serious vegetable crop diseases. In recent years, Trichoderma spp. has been widely used in root-knot nematode disease control as a biological control agent. Methods: Virulent and attenuated strains of Trichoderma citrinoviride mediated resistance and biological control mechanism in tomato were determined. Results: Preliminary experiments found differences in nematicidal virulence among Trichoderma citrinoviride. The 24-hour corrected mortality rate of the virulent strainT1910 was as high as 92.37%, with an LC50 of 0.5585 against the second juveniles (J2s) of Meloidogyne incognita. And the attenuated strain TC9 was 23.01%, the LC50 was 2.0615, so the virulent strain T1910 had a more substantial effect on the J2s than the attenuated strain. We found that the strong virulent strain T1910 have a good control effect on M. incognita by the pot experiment of tomato than that of the attenuated virulent strain TC9,especially the J2 and J4 numbers were inhibited inside the root knots of tomato. Theinhibition rates of virulent strains reached 85.22% and 76.91%, followed by attenuatedstrain TC9, which were 63.16% and 59.17%, respectively. To reveal the differences intomato defense pathways induced by different virulent strains, qRT-PCR was further usedto detect changes in the expression of inducement-related genes. The results showed thatthe TC9 was significantly upregulated at 5dpi, LOX1, PR1, and PDF1.2. The PR5 gene ofthe virulent strain T1910 was highly upregulated, and the JA pathway was activated laterbut weaker than the attenuated strain. The results of this study revealed that thebiocontrol mechanism of T. citrinoviride as poison killing through the virulent strain T1910 and induced resistance to M. incognita through attenuated strain, although virulence degradation also has an induced resistance effect. Moreover, the attenuated strain TC9 stimulated tomato immune response earlier than the virulent strain by nematode-associated molecular pattern-triggered (NAMP). Discussion: Therefore, the research elucidated the mechanism of multiple control of Trichoderma spp. against M. incognita.

6.
ACS Omega ; 8(5): 4889-4898, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777611

RESUMO

As novel wound dressings, cryogels with rapid hemostatic property and good sterilization effect are urgently desirable for wound healing. To reduce the use of antibiotics, antibacterial photothermal therapy with broad-spectrum bactericidal capacity and non-obvious bacterial resistance has been widely researched. However, photothermal agents usually suffer from poor hemostatic ability. In this research, sodium alginate (SA) and epigallocatechin gallate (EGCG) were non-covalently cross-linked in suit by ferric ions to obtain SA/EGCG/Fe (SEF) cryogels after lyophilization as an antibacterial wound dressing. Next, its photothermal performance was intensively assessed. Moreover, its hemostasis and bactericidal effect were evaluated. First, it displayed extraordinary photothermal ability owing to the formation of Fe3+/EGCG-based metal phenolic networks (MPNs) inside the SEF cryogel. Furthermore, in vitro and in vivo assays illustrated that it exhibits rapid hemostatic capacity owing to its high porosity and MPN-mediated cell adhesion capacity. In conclusion, the SEF cryogel manifests satisfactory hemostatic and bactericidal properties. Therefore, it is a promising wound-dressing candidate for clinical applications.

7.
Front Plant Sci ; 14: 1010348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824200

RESUMO

The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes severe economic loss to agricultural production by forming a parasitic relationship with its hosts. During the development of M. incognita in the host plant roots, giant cells are formed as a nutrient sink. However, the roles of sugar transporters during the giant cells gain sugar from the plant cells are needed to improve. Meanwhile, the eventual function of sugars will eventually be exported transporters (SWEETs) in nematode-plant interactions remains unclear. In this study, the expression patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M. incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing stage). We found that few AtSWEETs responded sensitively to M. incognita inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose transporter gene. Histological analyses indicated that the ß-glucuronidase (GUS) and green fluorescent protein (GFP) signals were observed specifically in the galls of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that AtSWEET1 was induced specifically in the galls. Genetic studies have shown that parasitism of M. incognita was significantly affected in atsweet1 compared to wild-type and complementation plants. In addition, parasitism of M. incognita was significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression of which was induced by inoculation with M. incognita. Taken together, these data prove that SWEETs play important roles in plant and nematode interactions.

8.
Front Bioeng Biotechnol ; 11: 1283112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239919

RESUMO

Introduction: The nematode species Meloidogyne incognita has been responsible for significant financial losses within the agricultural sector. Nematophagous bacteria, characterised by their extensive distribution and broad spectrum of hosts, exhibit remarkable efficacy as natural antagonists against nematodes. Sneb518 (Clostridium beijerinckii) fermentation broth displayed substantial biocontrol activity against M. incognita in previous research. Optimizing fermentation conditions is a fundamental technique for dramatically enhancing end product performance. There has been no such study conducted yet on enhancing the nematicidal activities of Sneb518 (Clostridium beijerinckii) fermentation using response surface methodology (RSM). Methods: The influence of strain Sneb518 fermentation media and conditions on nematicidal activity was examined using the three-factor technique and a Plackett-Burman design, and the interaction between various fermentation factors was examined using a Box-Behnken design. The present study employed response surface methodology (RSM) to examine and enhance the nematicidal activity of Sneb518 culture filtrates by identifying and optimising the influential components. Results: Glucose, peanut cake flour, and potassium chloride as carbon, nitrogen, and inorganic salts displayed considerably increased nematicidal potential in the present study. Furthermore, the corrected mortality of J2 ranged from 52.24% to 91.15% when utilizing the Box-Behnken design. These findings clearly support the application of RSM for medium optimization. Moreover, the outcomes of the validation experiment corresponded to the model predictions. Discussion: This research has enhanced the biocontrol ability of C. beijerinckii to control M. incognita and this research has led to the advancement of new biocontrol agents.

9.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430501

RESUMO

Soybean cyst nematode (SCN, Heterodera glycine) is a serious damaging disease in soybean worldwide, thus resulting in severe yield losses. MicroRNA408 (miR408) is an ancient and highly conserved miRNA involved in regulating plant growth, development, biotic and abiotic stress response. Here, we analyzed the evolution of miR408 in plants and verified four miR408 members in Glycine max. In the current research, highly upregulated gma-miR408 expressing was detected during nematode migration and syncytium formation response to soybean cyst nematode infection. Overexpressing and silencing miR408 vectors were transformed to soybean to confirm its potential role in plant and nematode interaction. Significant variations were observed in the MAPK signaling pathway with low OXI1, PR1, and wounding of the overexpressing lines. Overexpressing miR408 could negatively regulate soybean resistance to SCN by suppressing reactive oxygen species accumulation. Conversely, silencing miR408 positively regulates soybean resistance to SCN. Overall, gma-miR408 enhances soybean cyst nematode susceptibility by suppressing reactive oxygen species accumulation.


Assuntos
Cistos , Tylenchoidea , Animais , Glycine max/genética , Glycine max/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/genética , Tylenchoidea/fisiologia
10.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142678

RESUMO

Ubiquitination is a kind of post-translational modification of proteins that plays an important role in plant response to biotic and abiotic stress. The response of soybean GmPUB genes to soybean cyst nematode (SCN, Heterodera glycines) infection is largely unknown. In this study, quantitative real-time PCR (qRT-PCR) was performed to detect the relative expression of 49 GmPUB genes in susceptible cultivar William 82 and resistant cultivar Huipizhi after SCN inoculation. The results show that GmPUB genes responded to cyst nematode infection at 1 day post-inoculation (dpi), 5 dpi, 10 dpi and 15 dpi. The expression levels of GmPUB16A, GmPUB20A, GmCHIPA, GmPUB33A, GmPUB23A and GmPUB24A were dramatically changed during SCN infection. Furthermore, functional analysis of these GmPUB genes by overexpression and RNAi showed that GmPUB20A, GmPUB33A and GmPUB24A negatively regulated soybean resistance under SCN stress. The results from our present study provide insights into the complicated molecular mechanism of the interaction between soybean and SCN.


Assuntos
Cistos , Tylenchoidea , Animais , Doenças das Plantas/genética , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/fisiologia , Ubiquitinação
11.
Phytopathology ; 112(11): 2372-2382, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35668060

RESUMO

Root-knot nematodes (RKNs, Meloidogyne spp.) seriously damage tomato production worldwide, and biocontrol bacteria can induce tomato immunity to RKNs. Our previous studies have revealed that Pseudomonas putida strain Sneb821 can trigger tomato immunity against M. incognita and that several long noncoding RNAs and microRNAs (miRNAs) are involved in this process. However, the molecular functions of the miRNAs in tomato immune responses remain unclear. In this study, deep small RNA sequencing identified 78 differentially expressed miRNAs in tomato plants inoculated with Sneb821 and M. incognita relative to plants inoculated with M. incognita alone; 38 miRNAs were upregulated, and 40 miRNAs were downregulated. The expression levels of six known miRNAs and five novel miRNAs were validated using RT-qPCR assays. These included Sly-miR482d-3p, Sly-miR156e-5p, Sly-miR319a, novel_miR_116, novel_miR_121, and novel_miR_221, which were downregulated, and Sly-miR390a-3p, Sly-miR394-3p, Sly-miR396a-3p, novel_miR_215, and novel_miR_83, which were upregulated in plants treated with Sneb821 and M. incognita. In addition, Sly-miR482d was functionally characterized through gene silencing and overexpression of its target gene NBS-LRR (Solyc05g009750.1) in tomato and by challenging the plants with M. incognita inoculation. The number of second-stage juveniles (J2) inside roots and induced galls were significantly decreased in both Sly-miR482d-silenced plants and Solyc05g009750.1 overexpressing plants, whereas the activity of superoxide dismutase, peroxidase, and hydrogen peroxide content were significantly increased. The results suggest that Sneb821 could inhibit Sly-miR482d expression and thus regulate tomato immune responses against M. incognita infestation. This study provides novel insights into the biocontrol bacteria-mediated tomato immunity to M. incognita that engages with plant miRNAs.


Assuntos
MicroRNAs , Pseudomonas putida , Solanum lycopersicum , Tylenchoidea , Animais , Tylenchoidea/fisiologia , Solanum lycopersicum/microbiologia , Pseudomonas putida/genética , MicroRNAs/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia
12.
Gene ; 832: 146557, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35568338

RESUMO

Plant small-RNAs regulate various biological processes by manipulating the expression of target genes at the transcriptional and post-transcriptional levels. However, little is known about the response and the functional roles of sRNAs, particularly small-interfering RNAs (siRNAs), in the soybean-soybean cyst nematode interaction. In this study, siRNA data from 24 sRNA libraries constructed from SCN-infected and non-SCN-infected resistant and susceptible soybean roots were analysed in silico. A total of 26 novel siRNAs including 17 phasiRNAs and 9 nat-siRNAs, as well as two phasiRNAs that were differentially expressed (DE) in three comparisons, were identified. Then, using qRT-PCR, the expression of majority of siRNAs was found to be downregulated after SCN infection, and the expression patterns of DE siRNAs were confirmed. Further functional annotation analyses revealed that the target genes of these siRNA were highly related to disease resistance, which included the genes coding for the NB-ARC domain, leucine-rich repeats, and Hs1pro-1 homologous proteins. Overall, the present research identified novel siRNAs and annotated their target genes, thereby laying the foundation for deciphering the roles of siRNAs in the soybean-SCN interaction.


Assuntos
Cistos , MicroRNAs , Nematoides , Animais , MicroRNAs/genética , Nematoides/genética , Doenças das Plantas/genética , RNA Interferente Pequeno/genética , Glycine max/genética , Glycine max/metabolismo
14.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34884977

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines) is an obligate sedentary biotroph that poses major threats to soybean production globally. Recently, multiple miRNAome studies revealed that miRNAs participate in complicated soybean-SCN interactions by regulating their target genes. However, the functional roles of miRNA and target genes regulatory network are still poorly understood. In present study, we firstly investigated the expression patterns of miR159 and targeted GmMYB33 genes. The results showed miR159-3p downregulation during SCN infection; conversely, GmMYB33 genes upregulated. Furthermore, miR159 overexpressing and silencing soybean hairy roots exhibited strong resistance and susceptibility to H. glycines, respectively. In particular, miR159-GAMYB genes are reported to be involve in GA signaling and metabolism. Therefore, we then investigated the effects of GA application on the expression of miR159-GAMYB module and the development of H. glycines. We found that GA directly controls the miR159-GAMYB module, and exogenous GA application enhanced endogenous biologically active GA1 and GA3, the abundance of miR159, lowered the expression of GmMYB33 genes and delayed the development of H. glycines. Moreover, SCN infection also results in endogenous GA content decreased in soybean roots. In summary, the soybean miR159-GmMYB33 module was directly involved in the GA-modulated soybean resistance to H. glycines.


Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Glycine max/imunologia , MicroRNAs/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiologia , Animais , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/parasitologia
15.
Biology (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943269

RESUMO

BACKGROUND: The yield of soybean is limited by the soybean cyst nematode (SCN, Heterodera glycines). Soybean transformation plays a key role in gene function research but the stable genetic transformation of soybean usually takes half a year. METHODS: Here, we constructed a vector, pNI-GmUbi, in an Agrobacterium rhizogenes-mediated soybean hypocotyl transformation to induce fluorescent hairy roots (FHRs). RESULTS: We describe the operation of FHR-SCN, a fast, efficient and visual operation pathosystem to study the gene functions in the soybean-SCN interaction. With this method, FHRs were detected after 25 days in 4 cultivars (Williams 82, Zhonghuang 13, Huipizhiheidou and Peking) and at least 66.67% of the composite plants could be used to inoculate SCNs. The demographics of the SCN could be started 12 days post-SCN inoculation. Further, GmHS1pro-1 was overexpressed in the FHRs and GmHS1pro-1 provided an additional resistance in Williams 82. In addition, we found that jasmonic acid and JA-Ile increased in the transgenic soybean, implying that the resistance was mainly caused by affecting the content of JA and JA-Ile. CONCLUSIONS: In this study, we established a pathosystem, FHR-SCN, to verify the functional genes in soybeans and the SCN interaction. We also verified that GmHS1pro-1 provides additional resistance in both FHRs and transgenic soybeans, and the resistance may be caused by an increase in JA and JA-Ile contents.

16.
Life (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34833019

RESUMO

Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is responsible for causing a major soybean disease globally. The fungal strain Penicillium janthinellum Snef1650 was evaluated against H. glycines. However, the effective determinants of the P. janthinellum strain are unknown. By performing pot experiments, a functioning compound was isolated from P. janthinellum Snef1650 through organic solvent extraction, semi-preparative HPLC, Sephadex LH-20 column chromatography, and silica gel column chromatography, and the isolated compound was identified to be scopoletin through 1H NMR, 13C NMR, and HPLC-MS. The pot experiments indicated that the treatment of soybean seeds with scopoletin drastically reduced the SCN population. The field experiments performed in 2017 and 2018 revealed that scopoletin decreased over 43.7% juveniles in the roots and over 61.55% cysts in the soil. Scopoletin treatment also promoted soybean growth and improved its yield, with an increase in plot yield by >5.33%. Scopoletin obtained from P. janthinellum Snef1650 could be used as an anti-H. glycines biocontrol agent.

17.
Plant Dis ; 105(8): 2056-2060, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33591830

RESUMO

Knowledge about virulent phenotypes of Heterodera glycines Ichinohe, 1952 (soybean cyst nematode, SCN) is essential for breeding resistant cultivars and managing this nematode. Heilongjiang Province is the major soybean-producing region in China. SCN has been reported in 63 regions in Heilongjiang Province. To determine the prevalence and virulence of phenotypes of SCN, 112 soil samples were collected from soybean fields throughout the province in 2015. SCN was detected in 62 (55.4%) of these samples, with population densities ranging from 150 to 41,750 eggs and juveniles per 100 cm3 of soil. Eleven HG types, namely HG 0, 1.2.3.5.7, 1.2.3.7, 1.3.4.7, 1.3.7, 2, 2.5.7, 2.7, 6, 6.7, and 7, were detected. The percentages of SCN populations with female indices greater than 10 ranged from 4.8% for PI 437654 to 64.5% for PI 548316. This is the first report of seven of the HG types from Heilongjiang. These results provide guidance for breeding efforts and control strategies to combat SCN.


Assuntos
Tylenchoidea , Animais , China , Fenótipo , Glycine max , Tylenchoidea/genética , Virulência
18.
Pest Manag Sci ; 77(1): 568-576, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32815305

RESUMO

BACKGROUND: The soybean cyst nematode (SCN, Heterodera glycines) is the most devastating and yield-limiting pest in soybean worldwide. With the increasing awareness of environmental protection, biological control becomes more and more urgent. The Bacillus megaterium Sneb207 has previously shown the ability to inhibit the movement of SCN, but little is known about its effect on nematode control in agricultural settings. The aim of this study was to evaluate the efficiency of Sneb207 against SCN and investigate the ability of Sneb207 to induce systemic resistance to H. glycines in soybean. RESULTS: The stability and efficiency of SCN control by Sneb207 was assessed in two field experiments. Compared to non-treated control, Sneb207 significantly reduced the number of cysts, SCN juveniles, and eggs, while it promoted soybean growth. Furthermore, results of two pot experiments showed that the number of initial infections of second-stage juveniles were 231.75 and 131.3 after Sneb207 treatment, respectively, lower than control (274.75 and 215.33). Sneb207 reduced the total number of juveniles and females, and lengthened SCN development time. Moreover, through the split-root system and real-time quantitative PCR experiments, we found that Sneb207 induced systemic resistance and enhanced the gene expression of GmACS9b, GmEDS1, GmPAD4, GmSAMT1, and GmNPR1-1 involved in the salicylic acid, jasmonic acid and ethylene pathways at different levels. CONCLUSION: Our results demonstrate that B. megaterium Sneb207 inhibits the invasion, the development, and reproduction of SCN by inducing systemic resistance. The overall outcomes of the present study support B. megaterium Sneb207 as a potential biocontrol agent for H. glycines.


Assuntos
Bacillus megaterium , Cistos , Tylenchoidea , Animais , Doenças das Plantas , Glycine max
19.
Front Plant Sci ; 11: 597819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362829

RESUMO

The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, poses a serious threat to soybean production worldwide. Biological control agents have become eco-friendly candidates to control pathogens. Our previous study indicated that the biocontrol agent, Sinorhizobium fredii strain Sneb183, may induce soybean resistance to SCN. To study the mechanisms underlying induced disease resistance in the plant by Sneb183, an iTRAQ (isobaric tag for relative and absolute quantitation)-based proteomics approach was used to identify proteomic changes in SCN-infected soybean roots derived from seeds coated with the Sneb183 fermentation broth or water. Among a total of 456 identified differentially expressed proteins, 212 and 244 proteins were upregulated and downregulated, respectively, in Sneb183 treated samples in comparison to control samples. Some identified differentially expressed proteins are likely to be involved in the biosynthesis of phenylpropanoid, flavone, flavanol, and isoflavonoid and have a role in disease resistance and adaptation to environmental stresses. We used quantitative real-time PCR (qRT-PCR) to analyze key genes, including GmPAL (phenylalanine ammonia-lyase), GmCHR (chalcone reductase), GmCHS (chalcone synthase), and GmIFS (isoflavone synthase), that are involved in isoflavonoid biosynthesis in Sneb183-treated and control samples. The results showed that these targeted genes have higher expression levels in Sneb183-treated than in control samples. High performance liquid chromatography (HPLC) analysis further showed that the contents of daidzein in Sneb183-treated samples were 7.24 times higher than those in control samples. These results suggested that the Sinorhizobium fredii strain Sneb183 may have a role in inducing isoflavonoid biosynthesis, thereby resulting in enhanced resistance to SCN infection in soybean.

20.
BMC Microbiol ; 20(1): 299, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008296

RESUMO

BACKGROUND: Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. RESULTS: A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. CONCLUSIONS: T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.


Assuntos
Agentes de Controle Biológico , Hypocreales/crescimento & desenvolvimento , Controle Biológico de Vetores/métodos , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/parasitologia , Tylenchoidea/microbiologia , Animais , Produtos Agrícolas/parasitologia , Humanos , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Rizosfera , Solo/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA