Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 60(3): 1214-1231, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36427137

RESUMO

In the present study, the effect of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) was tested against memory impairment and sensitivity to nociception induced by intracerebroventricular injection of amyloid-beta peptide (Aß) (25-35 fragment), 3 nmol/3 µl/per site in mice. Memory impairment was determined by the object recognition task (ORT) and nociception by the Von-Frey test (VFT). Aß caused neuroinflammation with upregulation of glial fibrillary acidic protein (GFAP) (in hippocampus), nuclear factor-κB (NF-κB), and the proinflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in cerebral cortex and hippocampus. Additionally, Aß increased oxidant levels and lipid peroxidation in cerebral cortex and hippocampus, but decreased heme oxygenase-1 (HO-1) and peroxiredoxin-1 (Prdx1) expression in the hippocampus. Anti-neuroinflammatory effects of FSP were demonstrated by a decrease in the expression of GFAP and NF-κB in the hippocampus, as well as a decrease in proinflammatory cytokines in both the hippocampus and cerebral cortex FSP protected against oxidative stress by decreasing oxidant levels and lipid peroxidation and by increasing HO-1 and Prdx1 expressions in the hippocampus of mice. Moreover, FSP prevented the activation of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the hippocampus of mice induced by Aß. In conclusion, treatment with FSP attenuated memory impairment, nociception sensitivity by decreasing oxidative stress, and neuroinflammation in a mouse model of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Nociceptividade , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Transtornos da Memória/complicações , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Estresse Oxidativo , Hipocampo/metabolismo , Citocinas/metabolismo , Oxidantes , Purinas/farmacologia , Modelos Animais de Doenças , Fragmentos de Peptídeos/metabolismo
2.
Metab Brain Dis ; 36(5): 871-888, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651275

RESUMO

Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Memória/efeitos dos fármacos , Selênio/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Ansiedade/metabolismo , Aprendizagem da Esquiva/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Simulação de Acoplamento Molecular , Selênio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA