Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Adv Physiol Educ ; 48(1): 114-121, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205520

RESUMO

Rates of obesity continue to rise in the United States and across the globe. Obesity is a risk factor for developing insulin resistance, type 2 diabetes, and cardiovascular disease. For clinicians, other health care providers, and educators, providing patients with accurate and meaningful information about obesity, including lifestyle (diet and exercise) interventions and symptom monitoring, is challenging because of infrequent contact, methods of communication, a lack of effective patient education resources, and inefficient patient feedback methods. Evidence suggests that significantly more patients are now getting their health care information online from general medical websites, disease-specific network communities, and social media. Thus, harnessing the power of technologies, including personal computers and smartphones, with attention to social media may equip health care providers with methods to serve their patients better by addressing challenges, improving indirect patient contact, and enhancing health outcomes. This article aims to provide an overview of technology with a focus on social media use in obesity education and outreach. Practical information is provided related to creating content, delivering content, and managing the social media space for the novice creator.NEW & NOTEWORTHY Rates of obesity continue to increase. Health care providers have a limited time to cover the nuances of obesity. Technology and social media are tools that can help health care workers provide obesity education to a large audience. This article provides the foundations for obesity education content generation and delivery for the novice creator.


Assuntos
Diabetes Mellitus Tipo 2 , Mídias Sociais , Humanos , Obesidade/diagnóstico , Obesidade/epidemiologia , Estilo de Vida , Fatores de Risco
2.
Obesity (Silver Spring) ; 31(5): 1338-1346, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37140394

RESUMO

OBJECTIVE: The prevalence of type 2 diabetes in African American women (AAW) is nearly twice that of White women. Lower insulin sensitivity and decreased mitochondrial function may be contributing factors. The purpose of this study was to compare fat oxidation in AAW and White women. METHODS: Participants were 22 AAW and 22 White women, matched for age (18.7-38.3 years) and BMI (< 28 kg/m2). Participants completed two submaximal (50% VO2max) exercise tests with indirect calorimetry and stable isotope tracers to assess total, plasma, and intramyocellular triglyceride fat oxidation. RESULTS: The respiratory quotient during the exercise test was nearly identical in AAW and White women (0.813 ± 0.008 vs. 0.810 ± 0.008, p = 0.83). Although absolute total and plasma fat oxidation was lower in AAW, adjusting for the lower workload in AAW eliminated these racial differences. There was no racial difference in plasma and intramyocellular triglyceride source of fat for oxidation. No racial differences were observed in rates of ex vivo fat oxidation. Exercise efficiency was lower in AAW when adjusted to leg fat free mass. CONCLUSIONS: The data suggest that fat oxidation is not lower in AAW compared with White women, but additional studies are needed across exercise intensity, body weight, and age to confirm these results.


Assuntos
Negro ou Afro-Americano , Diabetes Mellitus Tipo 2 , Mitocôndrias , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem , Obesidade
4.
Anxiety Stress Coping ; 34(6): 766-777, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896294

RESUMO

OBJECTIVES: Coping with the stress of real and simulated disasters is thought to be integral to the performance of emergency medicine providers. Yet, little is known about which coping strategies are employed in these scenarios and whether differential use of strategies predicts actual clinical and interpersonal performance. METHODS: Thirty-four medical students were evaluated by trained simulated patients and physician observers across 111 clinical encounters during a simulated disaster. Linear Mixed Effects Modelling was used to test study hypotheses while accounting for demographic variables, psychological factors, and the dependency of multiple encounters for each participant. RESULTS: Results indicated that multilevel modeling was necessary. Positive thinking positively predicted observed clinical performance whereas avoidant coping was a negative predictor. Anticipatory anxiety and positive affect, but not reported coping, positively predicted student interpersonal performance. CONCLUSIONS: The present study indicates that the way medical students report managing the stress of disaster scenarios has clear links to their observed clinical performance above and beyond demographic and psychological factors. It further demonstrates the feasibility of empirically identifying specific coping strategies that may be important targets for disaster response training.


Assuntos
Desastres , Estudantes de Medicina , Adaptação Psicológica , Ansiedade , Humanos
6.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31833547

RESUMO

CONTEXT: African American women (AAW) have a higher incidence of insulin resistance and are at a greater risk for the development of obesity and type 2 diabetes than Caucasian women (CW). Although several factors have been proposed to mediate these racial disparities, the mechanisms remain poorly defined. We previously demonstrated that sedentary lean AAW have lower peripheral insulin sensitivity, reduced maximal aerobic fitness (VO2max), and lower resting metabolic rate (RMR) than CW. We have also demonstrated that skeletal muscle mitochondrial respiration is lower in AAW and appears to play a role in these racial differences. OBJECTIVE: The goal of this study was to assess mitochondrial pathways and dynamics to examine the potential mechanisms of lower insulin sensitivity, RMR, VO2max, and mitochondrial capacity in AAW. DESIGN: To achieve this goal, we assessed several mitochondrial pathways in skeletal muscle using gene array technology and semiquantitative protein analysis. RESULTS: We report alterations in mitochondrial pathways associated with inner membrane small molecule transport genes, fusion-fission, and autophagy in lean AAW. These differences were associated with lower insulin sensitivity, RMR, and VO2max. CONCLUSIONS: Together these data suggest that the metabolic racial disparity of insulin resistance, RMR, VO2max, and mitochondrial capacity may be mediated by perturbations in mitochondrial pathways associated with membrane transport, fission-fusion, and autophagy. The mechanisms contributing to these differences remain unknown.


Assuntos
Metabolismo Basal , Exercício Físico , Resistência à Insulina , Mitocôndrias/patologia , Dinâmica Mitocondrial , Músculo Esquelético/patologia , Adolescente , Adulto , Feminino , Seguimentos , Humanos , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Prognóstico , Adulto Jovem
7.
Clin Cancer Res ; 25(21): 6452-6462, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533931

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a predominantly fatal common malignancy with inadequate treatment options. Glycogen synthase kinase 3ß (GSK-3ß) is an emerging target in human malignancies including PDAC.Experimental Design: Pancreatic cancer cell lines and patient-derived xenografts were treated with a novel GSK-3 inhibitor 9-ING-41 alone or in combination with chemotherapy. Activation of the DNA damage response pathway and S-phase arrest induced by gemcitabine were assessed in pancreatic tumor cells with pharmacologic inhibition or siRNA depletion of GSK-3 kinases by immunoblotting, flow cytometry, and immunofluorescence. RESULTS: 9-ING-41 treatment significantly increased pancreatic tumor cell killing when combined with chemotherapy. Inhibition of GSK-3 by 9-ING-41 prevented gemcitabine-induced S-phase arrest suggesting an impact on the ATR-mediated DNA damage response. Both 9-ING-41 and siRNA depletion of GSK-3 kinases impaired the activation of ATR leading to the phosphorylation and activation of Chk1. Mechanistically, depletion or knockdown of GSK-3 kinases resulted in the degradation of the ATR-interacting protein TopBP1, thus limiting the activation of ATR in response to single-strand DNA damage. CONCLUSIONS: These data identify a previously unknown role for GSK-3 kinases in the regulation of the TopBP1/ATR/Chk1 DNA damage response pathway. The data also support the inclusion of patients with PDAC in clinical studies of 9-ING-41 alone and in combination with gemcitabine.


Assuntos
Adenocarcinoma/tratamento farmacológico , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Glicogênio Sintase Quinase 3 beta/genética , Proteínas Nucleares/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Gencitabina
8.
Oxid Med Cell Longev ; 2019: 3765643, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428225

RESUMO

Oxidative stress is a key feature in the pathophysiology of sickle cell disease. Endurance training has been shown to reduce oxidative stress in the heart and the liver of sickle mice. However, the effects of endurance training on skeletal muscles, which are major producers of reactive oxygen species during exercise, are currently unknown. The aim of this study was to evaluate the effect of sickle genotype on prooxidant/antioxidant response to individualized endurance training in skeletal muscles of sickle mice. Healthy and homozygous Townes sickle mice were divided into trained or sedentary groups. Maximal aerobic speed and V̇O2 peak were determined using an incremental test on a treadmill. Trained mice ran at 40% to 60% of maximal aerobic speed, 1 h/day, 5 days/week for 8 weeks. Oxidative stress markers, prooxidant/antioxidant response, and citrate synthase enzyme activities were assessed in the gastrocnemius, in the plantaris, and in the soleus muscles. Maximal aerobic speed and V̇O2 peak were significantly reduced in sickle compared to healthy mice (-57% and -17%; p < 0.001). NADPH oxidase, superoxide dismutase, and catalase activities significantly increased after training in the gastrocnemius of sickle mice only. A similar trend was observed for citrate synthase activity in sickle mice (p = 0.06). In this study, we showed an adaptive response to individualized endurance training on the prooxidant/antioxidant balance in the gastrocnemius, but neither in the plantaris nor in the soleus of trained sickle mice, suggesting an effect of sickle genotype on skeletal muscle response to endurance treadmill training.


Assuntos
Músculo Esquelético/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Anemia Falciforme/genética , Anemia Falciforme/patologia , Anemia Falciforme/veterinária , Animais , Catalase/metabolismo , Citrato (si)-Sintase/metabolismo , Camundongos , Camundongos Transgênicos , NADPH Oxidases/metabolismo , Consumo de Oxigênio , Superóxido Dismutase/metabolismo , Regulação para Cima , Xantina Oxidase/metabolismo
9.
Diabetes ; 68(2): 377-386, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425062

RESUMO

WASH is an endosomal protein belonging to the Wiskott-Aldrich syndrome protein superfamily that participates in endosomal receptor trafficking by facilitating tubule fission via activation of the ubiquitously expressed Arp2/3 complex. While several studies have begun to elucidate an understanding of the functions of WASH in cells lines, the in vivo function of WASH has not been fully elucidated, since total body deletion in mice leads to early embryonic lethality. To circumvent this problem, we have used a WASH conditional knockout mouse model to investigate the role of WASH in the pancreas. We find that pancreas-specific deletion of WASH leads to impaired blood glucose clearance and reduced insulin release upon glucose stimulation. Furthermore, WASH depletion results in impaired trafficking of Glut2 in pancreatic ß-cells as a consequence of an intracellular accumulation of Glut2 and overall decreased levels of Glut2 protein. Taken together, these results indicate that WASH participates in pancreatic ß-cell glucose sensing and whole-body glucose homeostasis. Thus, patients harboring mutations in components of the WASH complex could be at risk for developing type 2 diabetes.


Assuntos
Transportador de Glucose Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Imunofluorescência , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Homeostase , Humanos , Imuno-Histoquímica , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Transporte Vesicular/genética
10.
Obesity (Silver Spring) ; 26(5): 903-909, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29687648

RESUMO

OBJECTIVE: Reasons for the higher obesity prevalence in African American women (AAW) compared with Caucasian women (CW) are unknown. Energy expenditure and maximal aerobic capacity (VO2 max) are lower in AAW. It was hypothesized that these differences are explained by skeletal muscle characteristics, particularly mitochondrial content and function. METHODS: Multivariate regression analyses were used to examine the relationships between energy expenditure (resting and during a hyperinsulinemic-euglycemic clamp) and VO2 max versus body composition, physical activity, and skeletal muscle mitochondrial measurements in AAW and CW. RESULTS: In AAW, VO2 max was lower (P < 0.0001). Body-composition-adjusted energy expenditure during the clamp was lower in AAW (P < 0.002). Physical activity was similar in both groups. After adjusting for mitochondrial respiration, racial differences in energy expenditure and VO2 max were no longer present. Another novel finding was that a thermogenic response to the clamp was observed in CW (+53 ± 22 kcal/d; P < 0.03) but not in AAW (-19 ± 24 kcal/d; P = 0.43). CONCLUSIONS: AAW and CW show differences in adjusted energy expenditure and aerobic capacity that are largely accounted for by differences in skeletal muscle mitochondrial oxidative characteristics. Further research is needed to determine whether lower mitochondrial respiration and lower thermogenesis are risk factors for obesity in AAW.


Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/genética , Adulto , Negro ou Afro-Americano , Feminino , Humanos , Obesidade/metabolismo , População Branca , Adulto Jovem
11.
Blood Cells Mol Dis ; 69: 45-52, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28624257

RESUMO

Chronic systemic inflammation is a pathophysiological feature of sickle cell disease (SCD). Considering that regular exercise exerts multiple beneficial health effects including anti-inflammatory actions, we investigated whether a treadmill training program could minimize the inflammatory state in transgenic sickle cell (SS) mice. To test this hypothesis, SS mice were subjected to a treadmill training protocol of 1h/day, 5days a week for 8weeks. Exercise training increased the percent of venous oxyhemoglobin and sharply decreased the percent of carboxyhemoglobin suggesting that exercise training may limit the proportion of erythrocytes that were deoxygenated in the venous circulation. Exercise training attenuated systemic inflammation as attested by a significant drop in white blood cell (WBC) count and plasma Th1/Th2 cytokine ratio. There was reduction in interleukin-1ß and endothelin-1 mRNA expression in trained sickle mice. The spleen/body mass ratio was significantly decreased in trained sickle mice and there was a strong correlation between the magnitude of congestion and the relative spleen mass in all animals (trained and untrained). We conclude that moderate intensity exercise training, without any noticeable complications, may be associated with limited baseline blood deoxygenation and inflammation in sickle cell mice, and reduce sequestration of sickle erythrocytes/congestion in the spleen.


Assuntos
Anemia Falciforme/patologia , Inflamação/patologia , Condicionamento Físico Animal , Anemia Falciforme/sangue , Anemia Falciforme/genética , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Índices de Eritrócitos , Genótipo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo , Baço/patologia
12.
J Appl Physiol (1985) ; 123(1): 71-78, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28450549

RESUMO

It is well described that increasing free fatty acids (FFAs) to high physiological levels reduces insulin sensitivity. In sedentary humans, intramyocellular lipid (IMCL) is inversely related to insulin sensitivity. Since muscle fiber composition affects muscle metabolism, whether FFAs induce IMCL accumulation in a fiber type-specific manner remains unknown. We hypothesized that in the setting of acute FFA elevation by lipid infusion within the context of a hyperinsulinemic-euglycemic clamp, IMCL will preferentially accumulate in type 1 fibers. Normal-weight participants (n = 57, mean ± SE: age 24 ± 0.6 yr, BMI 22.2 ± 0.3 kg/m2) who were either endurance trained or sedentary by self-report were recruited from the University of Minnesota (n = 31, n = 15 trained) and University of Pittsburgh (n = 26, n = 14 trained). All participants underwent a hyperinsulinemic-euglycemic clamp in the context of a 6-h infusion of either lipid or glycerol control. A vastus lateralis muscle biopsy was obtained at baseline and end-infusion (6 h). The muscle biopsies were processed and analyzed at the University of Pittsburgh for fiber type-specific IMCL accumulation by Oil-Red-O staining. Regardless of training status, acute elevation of FFAs to high physiological levels (~400-600 meq/l) increased IMCL preferentially in type 1 fibers (+35 ± 11% compared with baseline, +29 ± 11% compared with glycerol control: P < 0.05). The increase in IMCL correlated with a decline in insulin sensitivity as measured by the hyperinsulinemic-euglycemic clamp (r = -0.32, P < 0.01) independent of training status. Regardless of training status, increase of FFAs to a physiological range within the context of hyperinsulinemia shows preferential IMCL accumulation in type 1 fibers.NEW & NOTEWORTHY This novel human study examined the effects of FFA elevation in the setting of hyperinsulinemia on accumulation of fat in specific types of muscle fibers. Within the context of the hyperinsulinemic-euglycemic clamp, we found that an increase of FFAs to a physiological range sufficient to reduce insulin sensitivity is associated with preferential IMCL accumulation in type 1 fibers.


Assuntos
Exercício Físico/fisiologia , Ácidos Graxos não Esterificados/fisiologia , Hiperinsulinismo/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Adulto , Estudos Cross-Over , Teste de Esforço/métodos , Ácidos Graxos não Esterificados/administração & dosagem , Feminino , Humanos , Hiperinsulinismo/induzido quimicamente , Masculino , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Estudos Prospectivos , Adulto Jovem
13.
J Gerontol A Biol Sci Med Sci ; 73(1): 81-87, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-28158621

RESUMO

BACKGROUND: Skeletal muscle insulin resistance and reduced mitochondrial capacity have both been reported to be affected by aging. The purpose of this study was to compare the effects of calorie restriction-induced weight loss and exercise on insulin resistance, skeletal muscle mitochondrial content, and mitochondrial enzyme activities in older overweight to obese individuals. METHODS: Insulin-stimulated rates of glucose disposal (Rd) were determined using the hyperinsulinemic euglycemic clamp before and after completing 16 weeks of either calorie restriction to induce weight loss (N = 7) or moderate exercise (N = 10). Mitochondrial volume density, mitochondria membrane content (cardiolipin), and activities of electron transport chain (rotenone-sensitive NADH-oxidase), tricarboxylic acid (TCA) cycle (citrate synthase) and ß-oxidation pathway (ß-hydroxyacyl CoA dehydrogenase; ß-HAD) were measured in percutaneous biopsies of the vastus lateralis before and after the interventions. RESULTS: Rd improved similarly (18.2% ± 9.0%, p < .04) with both weight loss and exercise. Moderate exercise significantly increased mitochondrial volume density (14.5% ± 2.0%, p < .05), cardiolipin content (22.5% ± 13.4%, p < .05), rotenone-sensitive NADH-oxidase (65.7% ± 13.2%, p = .02) and ß-HAD (30.7% ± 6.8%, p ≤ .03) activity, but not citrate synthase activity (10.1% ± 4.0%). In contrast, calorie restriction-induced weight loss did not affect mitochondrial content, NADH-oxidase or ß-HAD, yet increased citrate synthase activity (44.1% ± 21.1%, p ≤ .04). Exercise (increase) or weight loss (decrease) induced a remodeling of cardiolipin with a small (2%-3%), but significant change in the relative content of tetralinoleoyl cardiolipin. CONCLUSION: Exercise increases both mitochondria content and mitochondrial electron transport chain and fatty acid oxidation enzyme activities within skeletal muscle, while calorie restriction-induced weight loss did not, despite similar improvements in insulin sensitivity in overweight older adults.


Assuntos
Restrição Calórica , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Mitocôndrias Musculares/metabolismo , Obesidade/dietoterapia , Redução de Peso/fisiologia , Idoso , DNA Mitocondrial/metabolismo , Feminino , Técnica Clamp de Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Obesidade/patologia
14.
J Gerontol A Biol Sci Med Sci ; 72(4): 535-542, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325231

RESUMO

BACKGROUND: Considerable debate continues to surround the concept of mitochondrial dysfunction in aging muscle. We tested the overall hypothesis that age per se does not influence mitochondrial function and markers of mitochondria quality control, that is, expression of fusion, fission, and autophagy proteins. We also investigated the influence of cardiorespiratory fitness (VO2max) and adiposity (body mass index) on these associations. METHODS: Percutaneous biopsies of the vastus lateralis were obtained from sedentary young (n = 14, 24±3 years), middle-aged (n = 24, 41±9 years) and older adults (n = 20, 78±5 years). A physically active group of young adults (n = 10, 27±5 years) was studied as a control. Mitochondrial respiration was determined in saponin permeabilized fiber bundles. Fusion, fission and autophagy protein expression was determined by Western blot. Cardiorespiratory fitness was determined by a graded exercise test. RESULTS: Mitochondrial respiratory capacity and expression of fusion (OPA1 and MFN2) and fission (FIS1) proteins were not different among sedentary groups despite a wide age range (21 to 88 years). Mitochondrial respiratory capacity and fusion and fission proteins were, however, negatively associated with body mass index, and mitochondrial respiratory capacity was positively associated with cardiorespiratory fitness. The young active group had higher respiration, complex I and II respiratory control ratios, and expression of fusion and fission proteins. Finally, the expression of fusion, fission, and autophagy proteins were linked with mitochondrial respiration. CONCLUSIONS: Mitochondrial respiration and markers of mitochondrial dynamics (fusion and fission) are not associated with chronological age per se, but rather are more strongly associated with body mass index and cardiorespiratory fitness.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Aptidão Cardiorrespiratória , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Obesity (Silver Spring) ; 24(6): 1290-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27129892

RESUMO

OBJECTIVE: To determine effects of physical activity (PA) with diet-induced weight loss on energy metabolism in adults with severe obesity. METHODS: Adults with severe obesity (n = 11) were studied across 6 months of intervention, then compared with controls with less severe obesity (n = 7) or normal weight (n = 9). Indirect calorimetry measured energy metabolism during exercise and rest. Markers of muscle oxidation were determined by immunohistochemistry. Data were presented as medians. RESULTS: The intervention induced 7% weight loss (P = 0.001) and increased vigorous PA by 24 min/wk (P = 0.02). During exercise, energy expenditure decreased, efficiency increased (P ≤ 0.03), and fatty acid oxidation (FAO) did not change. Succinate dehydrogenase increased (P = 0.001), but fiber type remained the same. Post-intervention subjects' resting metabolism remained similar to controls. Efficiency was lower in post-intervention subjects compared with normal-weight controls exercising at 25 W (P ≤ 0.002) and compared with all controls exercising at 60% VO2peak (P ≤ 0.019). Resting and exercise FAO of post-intervention subjects remained similar to adults with less severe obesity. Succinate dehydrogenase and fiber type were similar across all body weight statuses. CONCLUSIONS: While metabolic adaptations to PA during weight loss occur in adults with severe obesity, FAO does not change. Resulting FAO during rest and exercise remains similar to adults with less severe obesity.


Assuntos
Metabolismo Basal , Metabolismo Energético , Exercício Físico , Obesidade Mórbida/terapia , Redução de Peso , Tecido Adiposo/metabolismo , Adulto , Composição Corporal , Índice de Massa Corporal , Calorimetria Indireta , Estudos Transversais , Dieta Redutora , Feminino , Humanos , Estilo de Vida , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Oxirredução
16.
Circulation ; 133(8): 717-31, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26813102

RESUMO

BACKGROUND: Pulmonary hypertension associated with heart failure with preserved ejection fraction (PH-HFpEF) is an increasingly recognized clinical complication of metabolic syndrome. No adequate animal model of PH-HFpEF is available, and no effective therapies have been identified to date. A recent study suggested that dietary nitrate improves insulin resistance in endothelial nitric oxide synthase null mice, and multiple studies have reported that both nitrate and its active metabolite, nitrite, have therapeutic activity in preclinical models of pulmonary hypertension. METHODS AND RESULTS: To evaluate the efficacy and mechanism of nitrite in metabolic syndrome associated with PH-HFpEF, we developed a 2-hit PH-HFpEF model in rats with multiple features of metabolic syndrome attributable to double-leptin receptor defect (obese ZSF1) with the combined treatment of vascular endothelial growth factor receptor blocker SU5416. Chronic oral nitrite treatment improved hyperglycemia in obese ZSF1 rats by a process that requires skeletal muscle SIRT3-AMPK-GLUT4 signaling. The glucose-lowering effect of nitrite was abolished in SIRT3-deficient human skeletal muscle cells, and in SIRT3 knockout mice fed a high-fat diet, as well. Skeletal muscle biopsies from humans with metabolic syndrome after 12 weeks of oral sodium nitrite and nitrate treatment (IND#115926) displayed increased activation of SIRT3 and AMP-activated protein kinase. Finally, early treatments with nitrite and metformin at the time of SU5416 injection reduced pulmonary pressures and vascular remodeling in the PH-HFpEF model with robust activation of skeletal muscle SIRT3 and AMP-activated protein kinase. CONCLUSIONS: These studies validate a rodent model of metabolic syndrome and PH-HFpEF, suggesting a potential role of nitrite and metformin as a preventative treatment for this disease.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Insuficiência Cardíaca/metabolismo , Hiperglicemia/metabolismo , Hipertensão Pulmonar/metabolismo , Sirtuína 3/metabolismo , Volume Sistólico/fisiologia , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hiperglicemia/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Ratos , Ratos Zucker , Nitrito de Sódio/farmacologia , Nitrito de Sódio/uso terapêutico , Volume Sistólico/efeitos dos fármacos
17.
Med Sci Sports Exerc ; 48(3): 472-80, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26460630

RESUMO

PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.


Assuntos
Atletas , Exercício Físico/fisiologia , Glicogênio/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Triglicerídeos/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Metabolismo dos Carboidratos , Estudos Transversais , Feminino , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Músculo Esquelético/irrigação sanguínea , Consumo de Oxigênio , Resistência Física , Adulto Jovem
18.
Am J Physiol Endocrinol Metab ; 308(10): E879-90, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25783895

RESUMO

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.


Assuntos
Adipócitos/metabolismo , Lipase/genética , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal/fisiologia , Esforço Físico/genética , Animais , Desempenho Atlético , Tolerância ao Exercício/genética , Feminino , Deleção de Genes , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Obesity (Silver Spring) ; 23(12): 2371-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26727116

RESUMO

OBJECTIVE: Autotaxin (ATX) is an adipocyte-derived lysophospholipase D that generates the lipid signaling molecule lysophosphatidic acid (LPA). The ATX/LPA pathway in adipose tissue has recently been implicated in obesity and insulin resistance in animal models, but the role of circulating ATX in humans remains unclear. The aim of the present study was to determine the relationship between serum ATX and insulin resistance. METHODS: Older (60-75 years), nondiabetic human participants with overweight or obesity (BMI 25-37 kg m(-2) ) were characterized for metabolic phenotype including measures of energy, glucose, and lipid homeostasis. The relationship between serum ATX and metabolic parameters was then determined using correlative and predictive statistics. RESULTS: Serum ATX was higher in females than in males. After controlling for sex, serum ATX correlated with multiple measures of adiposity and glucose homeostasis/insulin action. Serum ATX and BMI also independently predicted glucose infusion rate during a hyperinsulinemic euglycemic clamp and homeostatic model assessment of insulin resistance after controlling for sex and medication use. CONCLUSIONS: Serum ATX correlates with and predicts measures of glucose homeostasis and insulin sensitivity in older humans, suggesting that it may be a potential pathogenic factor and/or diagnostic/therapeutic target for insulin resistance in this population.


Assuntos
Envelhecimento/metabolismo , Resistência à Insulina , Obesidade/sangue , Diester Fosfórico Hidrolases/sangue , Adiposidade , Idoso , Envelhecimento/sangue , Animais , Glicemia/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/terapia , Programas de Redução de Peso
20.
J Neurosurg ; 123(1): 232-242, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25479124

RESUMO

OBJECT: Despite a promising outlook, existing intraspinal microstimulation (ISMS) techniques for restoring functional motor control after spinal cord injury are not yet suitable for use outside a controlled laboratory environment. Thus, successful application of ISMS therapy in humans will require the use of versatile chronic neurostimulation systems. The objective of this study was to establish proof of principle for wireless control of ISMS to evoke controlled motor function in a rodent model of complete spinal cord injury. METHODS: The lumbar spinal cord in each of 17 fully anesthetized Sprague-Dawley rats was stimulated via ISMS electrodes to evoke hindlimb function. Nine subjects underwent complete surgical transection of the spinal cord at the T-4 level 7 days before stimulation. Targeting for both groups (spinalized and control) was performed under visual inspection via dorsal spinal cord landmarks such as the dorsal root entry zone and the dorsal median fissure. Teflon-insulated stimulating platinum-iridium microwire electrodes (50 µm in diameter, with a 30- to 60-µm exposed tip) were implanted within the ventral gray matter to an approximate depth of 1.8 mm. Electrode implantation was performed using a free-hand delivery technique (n = 12) or a Kopf spinal frame system (n = 5) to compare the efficacy of these 2 commonly used targeting techniques. Stimulation was controlled remotely using a wireless neurostimulation control system. Hindlimb movements evoked by stimulation were tracked via kinematic markers placed on the hips, knees, ankles, and paws. Postmortem fixation and staining of the spinal cord tissue were conducted to determine the final positions of the stimulating electrodes within the spinal cord tissue. RESULTS: The results show that wireless ISMS was capable of evoking controlled and sustained activation of ankle, knee, and hip muscles in 90% of the spinalized rats (n = 9) and 100% of the healthy control rats (n = 8). No functional differences between movements evoked by either of the 2 targeting techniques were revealed. However, frame-based targeting required fewer electrode penetrations to evoke target movements. CONCLUSIONS: Clinical restoration of functional movement via ISMS remains a distant goal. However, the technology presented herein represents the first step toward restoring functional independence for individuals with chronic spinal cord injury.


Assuntos
Estimulação Elétrica/métodos , Paralisia/terapia , Traumatismos da Medula Espinal/terapia , Medula Espinal/fisiopatologia , Tecnologia sem Fio , Animais , Potencial Evocado Motor/fisiologia , Feminino , Microeletrodos , Modelos Animais , Movimento/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Paralisia/fisiopatologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA