Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38585989

RESUMO

The transition from fins to limbs has been a rich source of discussion for more than a century. One open and important issue is understanding how the mechanisms that pattern digits arose during vertebrate evolution. In this context, the analysis of Hox gene expression and functions to infer evolutionary scenarios has been a productive approach to explain the changes in organ formation, particularly in limbs. In tetrapods, the transcription of Hoxd genes in developing digits depends on a well-characterized set of enhancers forming a large regulatory landscape1,2. This control system has a syntenic counterpart in zebrafish, even though they lack bona fide digits, suggestive of deep homology3 between distal fin and limb developmental mechanisms. We tested the global function of this landscape to assess ancestry and source of limb and fin variation. In contrast to results in mice, we show here that the deletion of the homologous control region in zebrafish has a limited effect on the transcription of hoxd genes during fin development. However, it fully abrogates hoxd expression within the developing cloaca, an ancestral structure related to the mammalian urogenital sinus. We show that similar to the limb, Hoxd gene function in the urogenital sinus of the mouse also depends on enhancers located in this same genomic domain. Thus, we conclude that the current regulation underlying Hoxd gene expression in distal limbs was co-opted in tetrapods from a preexisting cloacal program. The orthologous chromatin domain in fishes may illustrate a rudimentary or partial step in this evolutionary co-option.

2.
Curr Opin Genet Dev ; 85: 102160, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38377879

RESUMO

During gastrulation, Hox genes are activated in a time-sequence that follows the order of the genes along their clusters. This property, which is observed in all animals that develop following a progressive rostral-to-caudal morphogenesis, is associated with changes in the chromatin structure and epigenetic profiles of Hox clusters, suggesting a process at least partly based on sequential gene accessibility. Here, we discuss recent work on this issue, as well as a possible mechanism based on the surprising conservation in both the distribution and orientation of CTCF sites inside vertebrate Hox clusters.


Assuntos
Genes Homeobox , Vertebrados , Animais , Genes Homeobox/genética , Vertebrados/genética , Morfogênese , Família Multigênica
3.
Nat Genet ; 55(7): 1164-1175, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37322110

RESUMO

During development, Hox genes are temporally activated according to their relative positions on their clusters, contributing to the proper identities of structures along the rostrocaudal axis. To understand the mechanism underlying this Hox timer, we used mouse embryonic stem cell-derived stembryos. Following Wnt signaling, the process involves transcriptional initiation at the anterior part of the cluster and a concomitant loading of cohesin complexes enriched on the transcribed DNA segments, that is, with an asymmetric distribution favoring the anterior part of the cluster. Chromatin extrusion then occurs with successively more posterior CTCF sites acting as transient insulators, thus generating a progressive time delay in the activation of more posterior-located genes due to long-range contacts with a flanking topologically associating domain. Mutant stembryos support this model and reveal that the presence of evolutionary conserved and regularly spaced intergenic CTCF sites controls the precision and the pace of this temporal mechanism.


Assuntos
Cromatina , DNA , Animais , Camundongos , Sítios de Ligação/genética , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromossomos/metabolismo , Genes Homeobox/genética
4.
Genes Dev ; 37(7-8): 261-276, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990510

RESUMO

Congenital genetic disorders affecting limb morphology in humans and other mammals are particularly well described, due to both their rather high frequencies of occurrence and the ease of their detection when expressed as severe forms. In most cases, their molecular and cellular etiology remained unknown long after their initial description, often for several decades, and sometimes close to a century. Over the past 20 yr, however, experimental and conceptual advances in our understanding of gene regulation, in particular over large genomic distances, have allowed these cold cases to be reopened and, eventually, for some of them to be solved. These investigations led not only to the isolation of the culprit genes and mechanisms, but also to the understanding of the often complex regulatory processes that are disturbed in such mutant genetic configurations. Here, we present several cases in which dormant regulatory mutations have been retrieved from the archives, starting from a historical perspective up to their molecular explanations. While some cases remain open, waiting for new tools and/or concepts to bring their investigations to an end, the solutions to others have contributed to our understanding of particular features often found in the regulation of developmental genes and hence can be used as benchmarks to address the impact of noncoding variants in the future.


Assuntos
Genoma , Mamíferos , Animais , Humanos , Mutação
5.
Nat Commun ; 13(1): 3488, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715427

RESUMO

The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Cromatina/genética , Cromossomos , Elementos Facilitadores Genéticos/genética , Extremidades , Fatores de Transcrição/genética
6.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35770682

RESUMO

Modifications in gene regulation are driving forces in the evolution of organisms. Part of these changes involve cis-regulatory elements (CREs), which contact their target genes through higher-order chromatin structures. However, how such architectures and variations in CREs contribute to transcriptional evolvability remains elusive. We use Hoxd genes as a paradigm for the emergence of regulatory innovations, as many relevant enhancers are located in a regulatory landscape highly conserved in amniotes. Here, we analysed their regulation in murine vibrissae and chicken feather primordia, two skin appendages expressing different Hoxd gene subsets, and compared the regulation of these genes in these appendages with that in the elongation of the posterior trunk. In the two former structures, distinct subsets of Hoxd genes are contacted by different lineage-specific enhancers, probably as a result of using an ancestral chromatin topology as an evolutionary playground, whereas the gene regulation that occurs in the mouse and chicken embryonic trunk partially relies on conserved CREs. A high proportion of these non-coding sequences active in the trunk have functionally diverged between species, suggesting that transcriptional robustness is maintained, despite considerable divergence in enhancer sequences.


Assuntos
Galinhas , Sequências Reguladoras de Ácido Nucleico , Animais , Galinhas/genética , Cromatina/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Sequências Reguladoras de Ácido Nucleico/genética
7.
Dev Biol ; 484: 75-87, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182536

RESUMO

Ever since their first report in 1984, Antennapedia-type homeobox (Hox) genes have been involved in such a series of interesting observations, in particular due to their conserved clustered organization between vertebrates and arthropods, that one may legitimately wonder about the origin of this heuristic value. In this essay, I first consider different examples where Hox gene clusters have been instrumental in providing conceptual advances, taken from various fields of research and mostly involving vertebrate embryos. These examples touch upon our understanding of genomic evolution, the revisiting of 19th century views on the relationships between development and evolution and the building of a new framework to understand long-range and pleiotropic gene regulation during development. I then discuss whether the high value of the Hox gene family, when considered as an epistemic object, is related to its clustered structure (and the absence thereof in some animal species) and, if so, what is it in such particular genetic oddities that made them so generous in providing the scientific community with interesting information.


Assuntos
Genes Homeobox , Heurística , Animais , Evolução Molecular , Genes Homeobox/genética , Genoma , Família Multigênica/genética , Vertebrados/genética
8.
Dev Dyn ; 251(9): 1550-1575, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34254395

RESUMO

BACKGROUND: The development of the amniote limb has been an important model system to study patterning mechanisms and morphogenesis. For proper growth and patterning, it requires the interaction between the distal sub-apical mesenchyme and the apical ectodermal ridge (AER) that involve the separate implementation of coordinated and tissue-specific genetic programs. RESULTS: Here, we produce and analyze the transcriptomes of both distal limb mesenchymal progenitors and the overlying ectodermal cells, following time-coursed dissections that cover from limb bud initiation to fully patterned limbs. The comparison of transcriptomes within each layer as well as between layers over time, allowed the identification of specific transcriptional signatures for each of the developmental stages. Special attention was given to the identification of genes whose transcription dynamics suggest a previously unnoticed role in the context of limb development and also to signaling pathways enriched between layers. CONCLUSION: We interpret the transcriptomic data in light of the known development pattern and we conclude that a major transcriptional transition occurs in distal limb buds between E9.5 and E10.5, coincident with the switch from an early phase continuation of the signature of trunk progenitors, related to the initial proximo distal specification, to a late intrinsic phase of development.


Assuntos
Botões de Extremidades , Transcriptoma , Animais , Ectoderma/metabolismo , Extremidades , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/metabolismo , Mesoderma , Camundongos , Transdução de Sinais
9.
Genes Dev ; 35(21-22): 1490-1509, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711654

RESUMO

Mammalian Hox gene clusters contain a range of CTCF binding sites. In addition to their importance in organizing a TAD border, which isolates the most posterior genes from the rest of the cluster, the positions and orientations of these sites suggest that CTCF may be instrumental in the selection of various subsets of contiguous genes, which are targets of distinct remote enhancers located in the flanking regulatory landscapes. We examined this possibility by producing an allelic series of cumulative in cis mutations in these sites, up to the abrogation of CTCF binding in the five sites located on one side of the TAD border. In the most impactful alleles, the global chromatin architecture of the locus was modified, yet not drastically, illustrating that CTCF sites located on one side of a strong TAD border are sufficient to organize at least part of this insulation. Spatial colinearity in the expression of these genes along the major body axis was nevertheless maintained, despite abnormal expression boundaries. In contrast, strong effects were scored in the selection of target genes responding to particular enhancers, leading to the misregulation of Hoxd genes in specific structures. Altogether, while most enhancer-promoter interactions can occur in the absence of this series of CTCF sites, the binding of CTCF in the Hox cluster is required to properly transform a rather unprecise process into a highly discriminative mechanism of interactions, which is translated into various patterns of transcription accompanied by the distinctive chromatin topology found at this locus. Our allelic series also allowed us to reveal the distinct functional contributions for CTCF sites within this Hox cluster, some acting as insulator elements, others being necessary to anchor or stabilize enhancer-promoter interactions, and some doing both, whereas they all together contribute to the formation of a TAD border. This variety of tasks may explain the amazing evolutionary conservation in the distribution of these sites among paralogous Hox clusters or between various vertebrates.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Animais , Sítios de Ligação , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Genes Homeobox/genética , Mamíferos/genética , Camundongos , Mutagênese
10.
Nat Commun ; 12(1): 5013, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408147

RESUMO

Human families with chromosomal rearrangements at 2q31, where the human HOXD locus maps, display mesomelic dysplasia, a severe shortening and bending of the limb. In mice, the dominant Ulnaless inversion of the HoxD cluster produces a similar phenotype suggesting the same origin for these malformations in humans and mice. Here we engineer 1 Mb inversion including the HoxD gene cluster, which positioned Hoxd13 close to proximal limb enhancers. Using this model, we show that these enhancers contact and activate Hoxd13 in proximal cells, inducing the formation of mesomelic dysplasia. We show that a secondary Hoxd13 null mutation in-cis with the inversion completely rescues the alterations, demonstrating that ectopic HOXD13 is directly responsible for this bone anomaly. Single-cell expression analysis and evaluation of HOXD13 binding sites suggests that the phenotype arises primarily by acting through genes normally controlled by HOXD13 in distal limb cells. Altogether, these results provide a conceptual and mechanistic framework to understand and unify the molecular origins of human mesomelic dysplasia associated with 2q31.


Assuntos
Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/metabolismo , Animais , Doenças do Desenvolvimento Ósseo/embriologia , Doenças do Desenvolvimento Ósseo/metabolismo , Modelos Animais de Doenças , Feminino , Deleção de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/metabolismo , Mutação com Perda de Função , Masculino , Camundongos Endogâmicos C57BL , Família Multigênica , Fatores de Transcrição/metabolismo
11.
PLoS Genet ; 17(7): e1009691, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292939

RESUMO

Mammalian genomes are partitioned into sub-megabase to megabase-sized units of preferential interactions called topologically associating domains or TADs, which are likely important for the proper implementation of gene regulatory processes. These domains provide structural scaffolds for distant cis regulatory elements to interact with their target genes within the three-dimensional nuclear space and architectural proteins such as CTCF as well as the cohesin complex participate in the formation of the boundaries between them. However, the importance of the genomic context in providing a given DNA sequence the capacity to act as a boundary element remains to be fully investigated. To address this question, we randomly relocated a topological boundary functionally associated with the mouse HoxD gene cluster and show that it can indeed act similarly outside its initial genomic context. In particular, the relocated DNA segment recruited the required architectural proteins and induced a significant depletion of contacts between genomic regions located across the integration site. The host chromatin landscape was re-organized, with the splitting of the TAD wherein the boundary had integrated. These results provide evidence that topological boundaries can function independently of their site of origin, under physiological conditions during mouse development.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/fisiologia , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/genética , Elementos Facilitadores Genéticos/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/genética , Genoma/genética , Genoma/fisiologia , Genômica/métodos , Camundongos , Camundongos Transgênicos
12.
Mol Biol Evol ; 38(6): 2260-2272, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528505

RESUMO

In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as "headgear," which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.


Assuntos
Evolução Biológica , Cabras/genética , Proteínas de Homeodomínio/genética , Cornos , Ovinos/genética , Animais , Biometria , Regulação da Expressão Gênica no Desenvolvimento , Cabras/embriologia , Cabras/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos Transgênicos , Mutação , Ovinos/embriologia , Ovinos/metabolismo
13.
Dev Dyn ; 250(9): 1280-1299, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497014

RESUMO

BACKGROUND: During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS: We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS: We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Animais , Extremidades , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Botões de Extremidades/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Proc Natl Acad Sci U S A ; 117(48): 30509-30519, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199643

RESUMO

Vertebrate Hox genes are critical for the establishment of structures during the development of the main body axis. Subsequently, they play important roles either in organizing secondary axial structures such as the appendages, or during homeostasis in postnatal stages and adulthood. Here, we set up to analyze their elusive function in the ectodermal compartment, using the mouse limb bud as a model. We report that the HoxC gene cluster was co-opted to be transcribed in the distal limb ectoderm, where it is activated following the rule of temporal colinearity. These ectodermal cells subsequently produce various keratinized organs such as nails or claws. Accordingly, deletion of the HoxC cluster led to mice lacking nails (anonychia), a condition stronger than the previously reported loss of function of Hoxc13, which is the causative gene of the ectodermal dysplasia 9 (ECTD9) in human patients. We further identified two mammalian-specific ectodermal enhancers located upstream of the HoxC gene cluster, which together regulate Hoxc gene expression in the hair and nail ectodermal organs. Deletion of these regulatory elements alone or in combination revealed a strong quantitative component in the regulation of Hoxc genes in the ectoderm, suggesting that these two enhancers may have evolved along with the mammalian taxon to provide the level of HOXC proteins necessary for the full development of hair and nail.


Assuntos
Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Folículo Piloso/metabolismo , Unhas/metabolismo , Animais , Biomarcadores , Ectoderma/embriologia , Folículo Piloso/embriologia , Humanos , Camundongos , Camundongos Knockout , Unhas/embriologia
15.
Proc Natl Acad Sci U S A ; 117(49): 31231-31241, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229569

RESUMO

The HoxD gene cluster is critical for proper limb formation in tetrapods. In the emerging limb buds, different subgroups of Hoxd genes respond first to a proximal regulatory signal, then to a distal signal that organizes digits. These two regulations are exclusive from one another and emanate from two distinct topologically associating domains (TADs) flanking HoxD, both containing a range of appropriate enhancer sequences. The telomeric TAD (T-DOM) contains several enhancers active in presumptive forearm cells and is divided into two sub-TADs separated by a CTCF-rich boundary, which defines two regulatory submodules. To understand the importance of this particular regulatory topology to control Hoxd gene transcription in time and space, we either deleted or inverted this sub-TAD boundary, eliminated the CTCF binding sites, or inverted the entire T-DOM to exchange the respective positions of the two sub-TADs. The effects of such perturbations on the transcriptional regulation of Hoxd genes illustrate the requirement of this regulatory topology for the precise timing of gene activation. However, the spatial distribution of transcripts was eventually resumed, showing that the presence of enhancer sequences, rather than either their exact topology or a particular chromatin architecture, is the key factor. We also show that the affinity of enhancers to find their natural target genes can overcome the presence of both a strong TAD border and an unfavorable orientation of CTCF sites.


Assuntos
Fator de Ligação a CCCTC/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos/genética , Genes Homeobox/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Botões de Extremidades/crescimento & desenvolvimento , Camundongos
16.
Elife ; 92020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32301703

RESUMO

Developmental genes are often controlled by large regulatory landscapes matching topologically associating domains (TADs). In various contexts, the associated chromatin backbone is modified by specific enhancer-enhancer and enhancer-promoter interactions. We used a TAD flanking the mouse HoxD cluster to study how these regulatory architectures are formed and deconstructed once their function achieved. We describe this TAD as a functional unit, with several regulatory sequences acting together to elicit a transcriptional response. With one exception, deletion of these sequences didn't modify the transcriptional outcome, a result at odds with a conventional view of enhancer function. The deletion and inversion of a CTCF site located near these regulatory sequences did not affect transcription of the target gene. Slight modifications were nevertheless observed, in agreement with the loop extrusion model. We discuss these unexpected results considering both conventional and alternative explanations relying on the accumulation of poorly specific factors within the TAD backbone.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Genitália/metabolismo , Mamíferos/genética , Animais , Fator de Ligação a CCCTC/metabolismo , Genes Homeobox/genética , Camundongos , Família Multigênica/genética , Regiões Promotoras Genéticas
17.
Development ; 147(3)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014867

RESUMO

Regulatory landscapes have been defined in vertebrates as large DNA segments containing diverse enhancer sequences that produce coherent gene transcription. These genomic platforms integrate multiple cellular signals and hence can trigger pleiotropic expression of developmental genes. Identifying and evaluating how these chromatin regions operate may be difficult as the underlying regulatory mechanisms can be as unique as the genes they control. In this brief article and accompanying poster, we discuss some of the ways in which regulatory landscapes operate, illustrating these mechanisms using genes important for vertebrate development as examples. We also highlight some of the techniques available to researchers for analysing regulatory landscapes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Transcrição Gênica , Animais , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Loci Gênicos , Humanos , Camundongos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Eur J Hum Genet ; 28(3): 324-332, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31591517

RESUMO

The HoxD cluster is critical for vertebrate limb development. Enhancers located in both the telomeric and centromeric gene deserts flanking the cluster regulate the transcription of HoxD genes. In rare patients, duplications, balanced translocations or inversions misregulating HOXD genes are responsible for mesomelic dysplasia of the upper and lower limbs. By aCGH, whole-genome mate-pair sequencing, long-range PCR and fiber fluorescent in situ hybridization, we studied patients from two families displaying mesomelic dysplasia limited to the upper limbs. We identified microduplications including the HOXD cluster and showed that microduplications were in an inverted orientation and inserted between the HOXD cluster and the telomeric enhancers. Our results highlight the existence of an autosomal dominant condition consisting of isolated ulnar dysplasia caused by microduplications inserted between the HOXD cluster and the telomeric enhancers. The duplications likely disconnect the HOXD9 to HOXD11 genes from their regulatory sequences. This presumptive loss-of-function may have contributed to the phenotype. In both cases, however, these rearrangements brought HOXD13 closer to telomeric enhancers, suggesting that the alterations derive from the dominant-negative effect of this digit-specific protein when ectopically expressed during the early development of forearms, through the disruption of topologically associating domain structure at the HOXD locus.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Duplicação Gênica , Proteínas de Homeodomínio/genética , Deformidades Congênitas das Extremidades Superiores/genética , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Feminino , Humanos , Lactente , Mutação com Perda de Função , Masculino , Família Multigênica , Fenótipo , Deformidades Congênitas das Extremidades Superiores/patologia
20.
BMC Biol ; 17(1): 55, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299961

RESUMO

BACKGROUND: The spatial organization of the mammalian genome relies upon the formation of chromatin domains of various scales. At the level of gene regulation in cis, collections of enhancer sequences define large regulatory landscapes that usually match with the presence of topologically associating domains (TADs). These domains often contain ranges of enhancers displaying similar or related tissue specificity, suggesting that in some cases, such domains may act as coherent regulatory units, with a global on or off state. By using the HoxD gene cluster, which specifies the topology of the developing limbs via highly orchestrated regulation of gene expression, as a paradigm, we investigated how the arrangement of regulatory domains determines their activity and function. RESULTS: Proximal and distal cells in the developing limb express different levels of Hoxd genes, regulated by flanking 3' and 5' TADs, respectively. We characterized the effect of large genomic rearrangements affecting these two TADs, including their fusion into a single chromatin domain. We show that, within a single hybrid TAD, the activation of both proximal and distal limb enhancers globally occurred as when both TADs are intact. However, the activity of the 3' TAD in distal cells is generally increased in the fused TAD, when compared to wild type where it is silenced. Also, target gene activity in distal cells depends on whether or not these genes had previously responded to proximal enhancers, which determines the presence or absence of H3K27me3 marks. We also show that the polycomb repressive complex 2 is mainly recruited at the Hox gene cluster and can extend its coverage to far-cis regulatory sequences as long as confined to the neighboring TAD structure. CONCLUSIONS: We conclude that antagonistic limb proximal and distal enhancers can exert their specific effects when positioned into the same TAD and in the absence of their genuine target genes. We also conclude that removing these target genes reduced the coverage of a regulatory landscape by chromatin marks associated with silencing, which correlates with its prolonged activity in time.


Assuntos
Cromatina/genética , Rearranjo Gênico/genética , Genes Homeobox/genética , Genoma , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA