Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Biol Chem ; 300(6): 107316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663826

RESUMO

Neuraminidases (NEUs) also called sialidases are glycosidases which catalyze the removal of terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Mammalian NEU-1 participates in regulation of cell surface receptors such as insulin receptor (IR), epithelial growth factor receptor, low-density lipoprotein receptor, and toll-like receptor 4. At the plasma membrane, NEU-1 can be associated with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to constitute the elastin receptor complex. In this complex, NEU-1 is essential for elastogenesis, signal transduction through this receptor and for biological effects of the elastin-derived peptides on atherosclerosis, thrombosis, insulin resistance, nonalcoholic steatohepatitis, and cancers. This is why research teams are developing inhibitors targeting this sialidase. Previously, we developed interfering peptides to inhibit the dimerization and the activation of NEU-1. In this study, we investigated the effects of these peptides on IR activation in vitro and in vivo. Using cellular overexpression and endogenous expression models of NEU-1 and IR (COS-7 and HepG2 cells, respectively), we have shown that interfering peptides inhibit NEU-1 dimerization and sialidase activity which results in a reduction of IR phosphorylation. These results demonstrated that NEU-1 positively regulates IR phosphorylation and activation in our conditions. In vivo, biodistribution study showed that interfering peptides are well distributed in mice. Treatment of C57Bl/6 mice during 8 weeks with interfering peptides induces a hyperglycemic effect in our experimental conditions. Altogether, we report here that inhibition of NEU-1 sialidase activity by interfering peptides decreases IR activity in vitro and glucose homeostasis in vivo.

2.
J Physiol Biochem ; 80(2): 363-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393636

RESUMO

The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two ß subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.


Assuntos
Células 3T3-L1 , Adipócitos , Elastina , Insulina , Receptor de Insulina , Receptores de Superfície Celular , Ácidos Siálicos , Animais , Receptor de Insulina/metabolismo , Camundongos , Adipócitos/metabolismo , Insulina/metabolismo , Elastina/metabolismo , Ácidos Siálicos/metabolismo , Fosforilação , Resistência à Insulina , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais
3.
Chempluschem ; 89(3): e202300662, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224555

RESUMO

Thiol-Michael addition is a chemical reaction extensively used for conjugating peptides to polysaccharides with applications as biomaterials. In the present study, for designing a bioactive element in electrospun scaffolds as wound dressing material, a chemical strategy for the semi-synthesis of a hyaluronan-elastin conjugate containing an amide linker (ELAHA) was developed in the presence of tris(2-carboxyethyl)phosphine hydrochloride (TCEP ⋅ HCl). The bioconjugate was electrospun with poly-D,L-lactide (PDLLA), obtaining scaffolds with appealing characteristics in terms of morphology and cell viability of dermal fibroblast cells. For comprehending the factors influencing the efficiency of the bioconjugation reaction, thiolated amino acids were also investigated as nucleophiles toward hyaluronan decorated with Michael acceptors in the presence of TCEP ⋅ HCl through the evaluation of byproducts formation.


Assuntos
Ácido Hialurônico , Fosfinas , Elastina/química , Materiais Biocompatíveis
4.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119645, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016490

RESUMO

Adenylyl Cyclase 8E (AC8E), which lacks part of M1 transmembrane domain, has been previously shown to dimerize with AC3 and down-regulate its activity, but the molecular mechanism of this inhibitory effect has remained elusive. Here, we first show that AC8E also inhibits AC2 and AC6, highlighting the functional importance of this novel regulatory mechanism in the cAMP signaling pathway across AC families. We then completed the partial structure of Bos taurus AC9 using combinations of comparative modeling and fold recognition methods, and used this as a template to build the first full 3D-models of AC8 and AC8E. These models evidenced that the lack of M1 transmembrane domain of AC8E shifts the N-terminal domain, which impacts the orientation of the helical domains, thus affecting the catalytic site. This was confirmed in living cells with cAMP imaging, where we showed that the N-terminal domain is required for reducing cAMP production. Our data also show that AC8E prevents the translocation of other ACs towards the plasma membrane, further reducing the cAMP responsiveness to extracellular signals. This newly discovered dual inhibitory mechanism provides an additional level of regulation of cAMP-dependent signals integration.


Assuntos
Adenilil Ciclases , AMP Cíclico , Humanos , Animais , Bovinos , Adenilil Ciclases/química , AMP Cíclico/metabolismo , Transdução de Sinais , Domínio Catalítico , Membrana Celular/metabolismo
5.
Ageing Res Rev ; 92: 102122, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956927

RESUMO

Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.


Assuntos
Envelhecimento , Rigidez Vascular , Humanos , Envelhecimento/metabolismo , Estresse Oxidativo , Senescência Celular , Transdução de Sinais
6.
PLoS One ; 18(9): e0285834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768946

RESUMO

Multidrug resistance (MDR) is a major obstacle to successful cancer chemotherapy. A typical form of MDR is due to the overexpression of membrane transport proteins., such as Glycoprotein-P (P-gp), resulting in an increased drug efflux preventing drug cytotoxicity. P-gp is mainly localized on the plasma membrane; however, it can also be endocytosed resulting in the trafficking of P-gp in endoplasmic reticulum, Golgi, endosomes, and lysosomes. The lysosomal P-gp has been found to be capable of transporting and sequestering P-gp substrates (e.g., Doxorubicin (Dox)) into lysosomes to protect cells against cytotoxic drugs. Many translational studies have shown that low-density lipoprotein receptor-related protein-1 (LRP-1) is involved in endocytosis and regulation of signalling pathways. LRP-1 mediates the endocytosis of a diverse set of extracellular ligands that play important roles in tumor progression. Here, we investigated the involvement of LRP-1 in P-gp expression and subcellular redistribution from the cell surface to the lysosomal membrane by endocytosis and its potential implication in P-gp-mediated multidrug resistance in MCF-7 cells. Our results showed that MCF-7 resistant cells (MCF-7R) overexpressed the P-gp, LRP-1 and LAMP-1 and were 11.66-fold resistant to Dox. Our study also revealed that in MCF-7R cells, lysosomes were predominantly high density compared to sensitized cells and P-gp was localized in the plasma membrane and lysosomes. LRP-1 blockade reduced lysosomes density and level of LAMP-1 and P-gp. It also affected the subcellular distribution of P-gp. Under these conditions, we restored Dox nuclear uptake and ERK 1/2 activation thus leading to MCF-7R cell sensitization to Dox. Our data suggest that LRP-1 is able to modulate the P-gp expression and subcellular redistribution by endocytosis and to potentiate the P-gp-acquired Dox resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Humanos , Antineoplásicos/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/farmacologia , Doxorrubicina/farmacologia , Células MCF-7 , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
7.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230790

RESUMO

Sialidases or neuraminidases (NEU) are glycosidases which cleave terminal sialic acid residues from glycoproteins, glycolipids and oligosaccharides. Four types of mammalian sialidases, which are encoded by different genes, have been described with distinct substrate specificity and subcellular localization: NEU-1, NEU-2, NEU-3 and NEU-4. Among them, NEU-1 regulates many membrane receptors through desialylation which results in either the activation or inhibition of these receptors. At the plasma membrane, NEU-1 also associates with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to form the elastin receptor complex. The activation of NEU-1 is required for elastogenesis and signal transduction through this receptor, and this is responsible for the biological effects that are mediated by the elastin-derived peptides (EDP) on obesity, insulin resistance and non-alcoholic fatty liver diseases. Furthermore, NEU-1 expression is upregulated in hepatocellular cancer at the mRNA and protein levels in patients, and this sialidase regulates the hepatocellular cancer cells' proliferation and migration. The implication of NEU-1 in other cancer types has also been shown notably in the development of pancreatic carcinoma and breast cancer. Altogether, these data indicate that NEU-1 plays a key role not only in metabolic disorders, but also in the development of several cancers which make NEU-1 a pharmacological target of high potential in these physiopathological contexts.

8.
Front Endocrinol (Lausanne) ; 13: 815356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222273

RESUMO

The incidence of cardiovascular diseases is increasing worldwide with the growing aging of the population. Biological aging has major influence on the vascular tree and is associated with critical changes in the morphology and function of the arterial wall together with an extensive remodeling of the vascular extracellular matrix. Elastic fibers fragmentation and release of elastin degradation products, also known as elastin-derived peptides (EDPs), are typical hallmarks of aged conduit arteries. Along with the direct consequences of elastin fragmentation on the mechanical properties of arteries, the release of EDPs has been shown to modulate the development and/or progression of diverse vascular and metabolic diseases including atherosclerosis, thrombosis, type 2 diabetes and nonalcoholic steatohepatitis. Most of the biological effects mediated by these bioactive peptides are due to a peculiar membrane receptor called elastin receptor complex (ERC). This heterotrimeric receptor contains a peripheral protein called elastin-binding protein, the protective protein/cathepsin A, and a transmembrane sialidase, the neuraminidase-1 (NEU1). In this review, after an introductive part on the consequences of aging on the vasculature and the release of EDPs, we describe the composition of the ERC, the signaling pathways triggered by this receptor, and the current pharmacological strategies targeting ERC activation. Finally, we present and discuss new regulatory functions that have emerged over the last few years for the ERC through desialylation of membrane glycoproteins by NEU1, and its potential implication in receptor transactivation.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , Idoso , Aterosclerose/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Peptídeos/metabolismo , Receptores de Superfície Celular/metabolismo
9.
FEBS J ; 289(13): 3704-3730, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33896108

RESUMO

Elastic fibers are extracellular components of higher vertebrates and confer elasticity and resilience to numerous tissues and organs such as large blood vessels, lungs, and skin. Their formation and maturation take place in a complex multistage process called elastogenesis. It requires interactions between very different proteins but also other molecules and leads to the deposition and crosslinking of elastin's precursor on a scaffold of fibrillin-rich microfibrils. Mature fibers are exceptionally resistant to most influences and, under healthy conditions, retain their biomechanical function over the life of the organism. However, due to their longevity, they accumulate damages during aging. These are caused by proteolytic degradation, formation of advanced glycation end products, calcification, oxidative damage, aspartic acid racemization, lipid accumulation, carbamylation, and mechanical fatigue. The resulting changes can lead to diminution or complete loss of elastic fiber function and ultimately affect morbidity and mortality. Particularly, the production of elastokines has been clearly shown to influence several life-threatening diseases. Moreover, the structure, distribution, and abundance of elastic fibers are directly or indirectly influenced by a variety of inherited pathological conditions, which mainly affect organs and tissues such as skin, lungs, or the cardiovascular system. A distinction can be made between microfibril-related inherited diseases that are the result of mutations in diverse microfibril genes and indirectly affect elastogenesis, and elastinopathies that are linked to changes in the elastin gene. This review gives an overview on the formation, structure, and function of elastic fibers and their fate over the human lifespan in health and disease.


Assuntos
Tecido Elástico , Elastina , Envelhecimento/genética , Animais , Elastina/genética , Elastina/metabolismo , Fibrilina-1/metabolismo , Fibrilinas/metabolismo , Humanos
10.
Cell Biosci ; 11(1): 206, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903296

RESUMO

BACKGROUND: Vascular aging is associated with remodeling of elastin, one of the main extracellular matrix component of the arterial wall, and production of elastin-derived peptides (EDP). These extracellular matrix degradation products have been shown to trigger biological activities through the elastin receptor complex (ERC) and data from the last decade have brought significant insights on the critical role played by its NEU1 subunit in the biological effects mediated by EDP and the ERC in vascular and metabolic diseases. RESULTS: Using a proteomic approach, we previously identified new potential interaction partners of membrane NEU1. Here, we validated the interaction between NEU1 and the ß2 integrin in human monocytes and show that binding of EDP to the ERC leads to desialylation of ß2 integrin through NEU1. A similar action mechanism was identified in human umbilical vein endothelial cells (HUVEC) for intercellular cell adhesion molecule-1 (ICAM-1). Importantly, these effects were associated with a significant increase in monocyte adhesion to endothelial cells and monocyte transendothelial migration. CONCLUSIONS: These results demonstrate that membrane NEU1 sialidase interacts and modulates the sialylation levels of the ß2 integrin and ICAM-1 through the ERC in monocytes and endothelial cells, respectively, and suggest that EDP and the ERC, through this newly identified common mode of action governed by NEU1, may be important regulators of circulating monocyte recruitment to inflamed vascular sites. Moreover, by its ability to interact with and to modulate the sialylation of key membrane glycoproteins through NEU1, new biological functions are anticipated for EDP and the ERC in elastin remodeling-associated disorders.

11.
Sci Rep ; 11(1): 22278, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782679

RESUMO

Numerous recent studies have shown that in the continuum of cardiovascular diseases, the measurement of arterial stiffness has powerful predictive value in cardiovascular risk and mortality and that this value is independent of other conventional risk factors, such as age, cholesterol levels, diabetes, smoking, or average blood pressure. Vascular stiffening is often the main cause of arterial hypertension (AHT), which is common in the presence of obesity. However, the mechanisms leading to vascular stiffening, as well as preventive factors, remain unclear. The aim of the present study was to investigate the consequences of apelin deficiency on the vascular stiffening and wall remodeling of aorta in mice. This factor freed by visceral adipose tissue, is known for its homeostasic role in lipid and vascular metabolisms, or again in inflammation. We compared the level of metabolic markers, inflammation of white adipose tissue (WAT), and aortic wall remodeling from functional and structural approaches in apelin-deficient and wild-type (WT) mice. Apelin-deficient mice were generated by knockout of the apelin gene (APL-KO). From 8 mice by groups, aortic stiffness was analyzed by pulse wave velocity measurements and by characterizations of collagen and elastic fibers. Mann-Whitney statistical test determined the significant data (p < 5%) between groups. The APL-KO mice developed inflammation, which was associated with significant remodeling of visceral WAT, such as neutrophil elastase and cathepsin S expressions. In vitro, cathepsin S activity was detected in conditioned medium prepared from adipose tissue of the APL-KO mice, and cathepsin S activity induced high fragmentations of elastic fiber of wild-type aorta, suggesting that the WAT secretome could play a major role in vascular stiffening. In vivo, remodeling of the extracellular matrix (ECM), such as collagen accumulation and elastolysis, was observed in the aortic walls of the APL-KO mice, with the latter associated with high cathepsin S activity. In addition, pulse wave velocity (PWV) and AHT were increased in the APL-KO mice. The latter could explain aortic wall remodeling in the APL-KO mice. The absence of apelin expression, particularly in WAT, modified the adipocyte secretome and facilitated remodeling of the ECM of the aortic wall. Thus, elastolysis of elastic fibers and collagen accumulation contributed to vascular stiffening and AHT. Therefore, apelin expression could be a major element to preserve vascular homeostasis.


Assuntos
Aorta/metabolismo , Aorta/fisiopatologia , Apelina/deficiência , Matriz Extracelular/metabolismo , Rigidez Vascular/genética , Animais , Apelina/genética , Apelina/metabolismo , Biomarcadores , Pressão Sanguínea , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Elastase Pancreática/genética , Elastase Pancreática/metabolismo
12.
Sci Rep ; 11(1): 17827, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497312

RESUMO

Because of their long lifespan, matrix proteins of the vascular wall, such as elastin, are subjected to molecular aging characterized by non-enzymatic post-translational modifications, like carbamylation which results from the binding of cyanate (mainly derived from the dissociation of urea) to protein amino groups. While several studies have demonstrated a relationship between increased plasma concentrations of carbamylated proteins and the development of cardiovascular diseases, molecular mechanisms explaining the involvement of protein carbamylation in these pathological contexts remain to be fully elucidated. The aim of this work was to determine whether vascular elastic fibers could be carbamylated, and if so, what impact this phenomenon would have on the mechanical properties of the vascular wall. Our experiments showed that vascular elastin was carbamylated in vivo. Fiber morphology was unchanged after in vitro carbamylation, as well as its sensitivity to elastase degradation. In mice fed with cyanate-supplemented water in order to increase protein carbamylation within the aortic wall, an increased stiffness in elastic fibers was evidenced by atomic force microscopy, whereas no fragmentation of elastic fiber was observed. In addition, this increased stiffness was also associated with an increase in aortic pulse wave velocity in ApoE-/- mice. These results provide evidence for the carbamylation of elastic fibers which results in an increase in their stiffness at the molecular level. These alterations of vessel wall mechanical properties may contribute to aortic stiffness, suggesting a new role for carbamylation in cardiovascular diseases.


Assuntos
Aorta/fisiologia , Tecido Elástico/metabolismo , Elastina/metabolismo , Rigidez Vascular/fisiologia , Animais , Aorta/efeitos dos fármacos , Bovinos , Cianatos/farmacologia , Tecido Elástico/efeitos dos fármacos , Camundongos , Carbamilação de Proteínas/efeitos dos fármacos , Rigidez Vascular/efeitos dos fármacos
13.
Biomedicines ; 9(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920466

RESUMO

Sialidases, also called neuraminidases, are involved in several human pathologies such as neurodegenerative disorders, cancers, as well as infectious and cardiovascular diseases. Several studies have shown that neuraminidases, such as neuraminidase 1 (NEU-1), may be promising pharmacological targets. Therefore, the discovery of new selective inhibitors of NEU-1 are necessary to better understand the biological functions of this sialidase. In the present study, we describe the isolation and characterization of nine known compounds from Olyra latifolia L. leaves. This plant, known to have several therapeutic properties, belongs to the family of Poaceae and is found in the neotropics and in tropical Africa and Madagascar. Among the purified compounds, feddeiketone B, 2,3-dihydroxy-1-(4-hydroxy-3,5-diméthoxyphényl)-l-propanone, and syringylglycerol were shown to present structural analogy with DANA, and their effects on membrane NEU-1 sialidase activity were evaluated. Our results show that they possess inhibitory effects against NEU-1-mediated sialidase activity at the plasma membrane. In conclusion, we identified new natural bioactive molecules extracted from Olyra latifolia as inhibitors of human NEU-1 of strong interest to elucidate the biological functions of this sialidase and to target this protein involved in several pathophysiological contexts.

14.
J Cardiovasc Pharmacol ; 77(5): 660-672, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33760798

RESUMO

ABSTRACT: Desialylation, governed by sialidases or neuraminidases, is strongly implicated in a wide range of human disorders, and accumulative data show that inhibition of neuraminidases, such as neuraminidases 1 sialidase, may be useful for managing atherosclerosis. Several studies have reported promising effects of oseltamivir phosphate, a widely used anti-influenza sialidase inhibitor, on human cancer cells, inflammation, and insulin resistance. In this study, we evaluated the effects of oseltamivir phosphate on atherosclerosis and thrombosis and potential liver toxicity in LDLR-/- mice fed with high-fat diet. Our results showed that oseltamivir phosphate significantly decreased plasma levels of LDL cholesterol and elastin fragmentation in aorta. However, no effect was observed on both atherosclerotic plaque size in aortic roots and chemically induced thrombosis in carotid arteries. Importantly, oseltamivir phosphate administration had adverse effects on the liver of mice and significantly increased messenger RNA expression levels of F4/80, interleukin-1ß, transforming growth factor-ß1, matrix metalloproteinase-12, and collagen. Taken together, our findings suggest that oseltamivir phosphate has limited benefits on atherosclerosis and carotid thrombosis and may lead to adverse side effects on the liver with increased inflammation and fibrosis.


Assuntos
Antivirais/toxicidade , Doenças da Aorta/tratamento farmacológico , Aterosclerose/tratamento farmacológico , Trombose das Artérias Carótidas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Oseltamivir/toxicidade , Receptores de LDL/deficiência , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Trombose das Artérias Carótidas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Medição de Risco
15.
FEBS J ; 288(24): 6850-6912, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33605520

RESUMO

Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.


Assuntos
Matriz Extracelular/metabolismo , Animais , Matriz Extracelular/química , Humanos
16.
Nanoscale ; 13(2): 1124-1133, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33399602

RESUMO

Arterial stiffness is a complex process affecting the aortic tree that significantly contributes to cardiovascular diseases (systolic hypertension, coronary artery disease, heart failure or stroke). This process involves a large extracellular matrix remodeling mainly associated with elastin content decrease and collagen content increase. Additionally, various chemical modifications that accumulate with ageing have been shown to affect long-lived assemblies, such as elastic fibers, that could affect their elasticity. To precisely characterize the fiber changes and the evolution of its elasticity with ageing, high resolution and multimodal techniques are needed for precise insight into the behavior of a single fiber and its surrounding medium. In this study, the latest developments in atomic force microscopy and the related nanomechanical modes are used to investigate the evolution and in a near-physiological environment, the morphology and elasticity of aorta cross sections obtained from mice of different ages with an unprecedented resolution. In correlation with more classical approaches such as pulse wave velocity and fluorescence imaging, we demonstrate that the relative Young's moduli of elastic fibers, as well as those of the surrounding areas, significantly increase with ageing. This nanoscale characterization presents a new view on the stiffness process, showing that, besides the elastin and collagen content changes, elasticity is impaired at the molecular level, allowing a deeper understanding of the ageing process. Such nanomechanical AFM measurements of mouse tissue could easily be applied to studies of diseases in which elastic fibers suffer pathologies such as atherosclerosis and diabetes, where the precise quantification of fiber elasticity could better follow the fiber remodeling and predict plaque rupture.


Assuntos
Aorta , Análise de Onda de Pulso , Envelhecimento , Animais , Elasticidade , Camundongos , Microscopia de Força Atômica
17.
Front Oncol ; 10: 551228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365267

RESUMO

It is now admitted that in addition to acquired resistance, the tumor microenvironment contributes to the development of chemo-resistance and malignant progression. In a previous study, we showed that Dox induced apoptosis in FTC-133 cells by trigging JNK pathway. This process was accompanied by a decrease of thrombospondin-1 (TSP-1) expression. Moreover, exogenous TSP-1 or its C-terminal-derived peptide interact with receptor CD47 and are able to protect FTC-133 cells against Dox-induced apoptosis. Here, we investigated the involvement of TSP-1/CD47 interaction in a context of acquired multidrug resistance in FTC-133 cells. To that end, we established a Dox-resistant cell line (FTC-133R cells) which developed a resistance against Dox-induced apoptosis. Cell viability was evaluated by Uptiblue assay, nuclear Dox was measured by microspectrofluorimetry, caspase activity was measured by fluorescence of cleaved caspase-3 substrate, gene expression was evaluated by RT-PCR and protein expression was examined by western-blot. Our results showed that FTC-133R overexpressed the P-gp and were 15-fold resistant to Dox. JNK phosphorylation and Dox-induced apoptosis were reduced in FTC-133R cells. Expression of CD47 was increased in FTC-133R cells but TSP-1 expression presented similar levels in two cell lines. VPL restored Dox nuclear uptake and FTC-133R cell sensitivity to apoptosis and induced a decrease in CD47 mRNA expression. Moreover, knockdown of CD47 in FTC-133R cells induced an increase in JNK activation and sensitized FTC-133R cells to Dox. Our data suggest that CD47 is able to contribute to the protection of FTC-133R cells against Dox-induced apoptosis and/or to potentiate the acquired Dox resistance.

18.
J Physiol Biochem ; 76(3): 457-467, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592089

RESUMO

Elastin, the major protein of the extracellular matrix, is specially found in cardiovascular tissues and contributing to 30-50% of the dry weight of blood vessels. Elastin regulates cell signalling pathways involved in morphogenesis, injury response and inflammation. The function of elastin is frequently compromised in damaged or aged elastic tissues. Indeed, elastin degradation, observed during ageing, and the resulting production of elastin-derived peptides (EDPs), have crucial impacts on cardiovascular disease (atherosclerosis, thrombosis) or on metabolism disease progressions (type 2 diabetes or non-alcoholic steatohepatitis). In the present study, we analysed the EDP effects on 3T3 preadipocyte cell differentiation. In a first part, we treated 3T3-L1 cells with EDP and visualized the lipid droplet accumulation by the oil red O staining and measured the expression of various transcription factors and adipocyte-specific mRNAs by real-time RT-PCR. We demonstrated that the elastin receptor complex, ERC, is activated by EDPs and decreased adipocyte differentiation by a modulation of crucial adipogenesis transcriptional factor particularly PPARγ. In a second part, we identified the signalling pathway implicated in EDP-reduced cell differentiation. The flow cytometry and immunocytochemistry approaches showed that ERC activated by EDP produced a second messenger, lactosylceramide (Lac-Cer). Moreover, this Lac-Cer production favoured the phosphorylation of ERK1-2 (p-ERK1-2), to decrease adipocyte differentiation by a modulation of adipogenesis transcriptional factor PPARγ. To conclude, the EDP/Lac-Cer/p-ERK1-2 signalling pathway may be studied further as a critical target for treating complications associated with adipocyte dedifferentiation such as obesity and diabetes insulin resistance.


Assuntos
Adipócitos/citologia , Adipogenia , Elastina/metabolismo , Lactosilceramidas/metabolismo , Oligopeptídeos/metabolismo , Células 3T3-L1 , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos , Receptores de Superfície Celular/metabolismo
19.
Front Oncol ; 10: 519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351895

RESUMO

Cellular functions are regulated by extracellular signals such as hormones, neurotransmitters, matrix ligands, and other chemical or physical stimuli. Ligand binding on its transmembrane receptor induced cell signaling and the recruitment of several interacting partners to the plasma membrane. Nowadays, it is well-established that the transmembrane domain is not only an anchor of these receptors to the membrane, but it also plays a key role in receptor dimerization and activation. Indeed, interactions between transmembrane helices are associated with specific biological activity of the proteins as cell migration, proliferation, or differentiation. Overexpression or constitutive dimerization (due notably to mutations) of these transmembrane receptors are involved in several physiopathological contexts as cancers. The transmembrane domain of tyrosine kinase receptors as ErbB family proteins (implicated in several cancers as HER2 in breast cancer) or other receptors as Neuropilins has been described these last years as a target to inhibit their dimerization/activation using several strategies. In this review, we will focus on the strategy which consists in using peptides to disturb in a specific manner the interactions between transmembrane domains and the signaling pathways (induced by ligand binding) of these receptors involved in cancer. This approach can be extended to inhibit other transmembrane protein dimerization as neuraminidase-1 (the catalytic subunit of elastin receptor complex), Discoidin Domain Receptor 1 (a tyrosine kinase receptor activated by type I collagen) or G-protein coupled receptors (GPCRs) which are involved in cancer processes.

20.
Front Cell Dev Biol ; 8: 611121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392200

RESUMO

Sialidases, or neuraminidases, are involved in several human disorders such as neurodegenerative, infectious and cardiovascular diseases, and cancers. Accumulative data have shown that inhibition of neuraminidases, such as NEU1 sialidase, may be a promising pharmacological target, and selective inhibitors of NEU1 are therefore needed to better understand the biological functions of this sialidase. In the present study, we designed interfering peptides (IntPep) that target a transmembrane dimerization interface previously identified in human NEU1 that controls its membrane dimerization and sialidase activity. Two complementary strategies were used to deliver the IntPep into cells, either flanked to a TAT sequence or non-tagged for solubilization in detergent micelles. Combined with molecular dynamics simulations and heteronuclear nuclear magnetic resonance (NMR) studies in membrane-mimicking environments, our results show that these IntPep are able to interact with the dimerization interface of human NEU1, to disrupt membrane NEU1 dimerization and to strongly decrease its sialidase activity at the plasma membrane. In conclusion, we report here new selective inhibitors of human NEU1 of strong interest to elucidate the biological functions of this sialidase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA