Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 7(5): 425-441, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35530264

RESUMO

To gain insights into the mechanisms driving cardiovascular complications in COVID-19, we performed a case-control plasma proteomics study in COVID-19 patients. Our results identify the senescence-associated secretory phenotype, a marker of biological aging, as the dominant process associated with disease severity and cardiac involvement. FSTL3, an indicator of senescence-promoting Activin/TGFß signaling, and ADAMTS13, the von Willebrand Factor-cleaving protease whose loss-of-function causes microvascular thrombosis, were among the proteins most strongly associated with myocardial stress and injury. Findings were validated in a larger COVID-19 patient cohort and the hamster COVID-19 model, providing new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.

2.
Vet Pathol ; 59(4): 648-660, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35521761

RESUMO

There is a need to standardize pathologic endpoints in animal models of SARS-CoV-2 infection to help benchmark study quality, improve cross-institutional comparison of data, and assess therapeutic efficacy so that potential drugs and vaccines for SARS-CoV-2 can rapidly advance. The Syrian hamster model is a tractable small animal model for COVID-19 that models clinical disease in humans. Using the hamster model, the authors used traditional pathologic assessment with quantitative image analysis to assess disease outcomes in hamsters administered polyclonal immune sera from previously challenged rhesus macaques. The authors then used quantitative image analysis to assess pathologic endpoints across studies performed at different institutions using different tissue processing protocols. The authors detail pathological features of SARS-CoV-2 infection longitudinally and use immunohistochemistry to quantify myeloid cells and T lymphocyte infiltrates during SARS-CoV-2 infection. High-dose immune sera protected hamsters from weight loss and diminished viral replication in tissues and reduced lung lesions. Cumulative pathology scoring correlated with weight loss and was robust in distinguishing IgG efficacy. In formalin-infused lungs, quantitative measurement of percent area affected also correlated with weight loss but was less robust in non-formalin-infused lungs. Longitudinal immunohistochemical assessment of interstitial macrophage infiltrates showed that peak infiltration corresponded to weight loss, yet quantitative assessment of macrophage, neutrophil, and CD3+ T lymphocyte numbers did not distinguish IgG treatment effects. Here, the authors show that quantitative image analysis was a useful adjunct tool for assessing SARS-CoV-2 treatment outcomes in the hamster model.


Assuntos
COVID-19 , Doenças dos Roedores , Animais , COVID-19/veterinária , Vacinas contra COVID-19 , Cricetinae , Modelos Animais de Doenças , Humanos , Soros Imunes , Imunoglobulina G , Pulmão/patologia , Macaca mulatta , Mesocricetus , Doenças dos Roedores/patologia , SARS-CoV-2 , Redução de Peso
3.
PLoS Pathog ; 18(4): e1009990, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395058

RESUMO

Syrian golden hamsters exhibit features of severe disease after SARS-CoV-2 WA1/2020 challenge and are therefore useful models of COVID-19 pathogenesis and prevention with vaccines. Recent studies have shown that SARS-CoV-2 infection stimulates type I interferon, myeloid, and inflammatory signatures similar to human disease and that weight loss can be prevented with vaccines. However, the impact of vaccination on transcriptional programs associated with COVID-19 pathogenesis and protective adaptive immune responses is unknown. Here we show that SARS-CoV-2 WA1/2020 challenge in hamsters stimulates myeloid and inflammatory programs as well as signatures of complement and thrombosis associated with human COVID-19. Notably, immunization with Ad26.COV2.S, an adenovirus serotype 26 vector (Ad26)-based vaccine expressing a stabilized SARS-CoV-2 spike protein, prevents the upregulation of these pathways, such that the mRNA expression profiles of vaccinated hamsters are comparable to uninfected animals. Using proteomics profiling, we validated these findings in rhesus macaques challenged with SARS-CoV-2 WA1/2020 or SARS-CoV-2 B.1.351. Finally, we show that Ad26.COV2.S vaccination induces T and B cell signatures that correlate with binding and neutralizing antibody responses weeks following vaccination. These data provide insights into the molecular mechanisms of Ad26.COV2.S protection against severe COVID-19 in animal models.


Assuntos
COVID-19 , Trombose , Ad26COVS1 , Animais , Anticorpos Neutralizantes , Vacinas contra COVID-19 , Cricetinae , Humanos , Inflamação , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Regulação para Cima
4.
Med ; 3(4): 262-268.e4, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35313451

RESUMO

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant has proven to be highly transmissible and has outcompeted the Delta variant in many regions of the world. Early reports have also suggested that Omicron may result in less severe clinical disease in humans. Here, we show that Omicron is less pathogenic than prior SARS-CoV-2 variants in Syrian golden hamsters. Methods: Hamsters were inoculated with either SARS-CoV-2 Omicron or other SARS-CoV-2 variants. Animals were followed for weight loss, and upper and lower respiratory tract tissues were assessed for viral loads and histopathology. Findings: Infection of hamsters with the SARS-CoV-2 WA1/2020, Alpha, Beta, or Delta strains led to 4%-10% weight loss by day 4 and 10%-17% weight loss by day 6. In contrast, infection of hamsters with two different Omicron challenge stocks did not result in any detectable weight loss, even at high challenge doses. Omicron infection led to substantial viral replication in both the upper and lower respiratory tracts but demonstrated lower viral loads in lung parenchyma and reduced pulmonary pathology compared with WA1/2020 infection. Conclusions: These data suggest that the SARS-CoV-2 Omicron variant may result in robust upper respiratory tract infection, but less severe lower respiratory tract clinical disease, compared with prior SARS-CoV-2 variants. Funding: Funding for this study was provided by NIH grant CA260476, the Massachusetts Consortium for Pathogen Readiness, the Ragon Institute, and the Musk Foundation.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , SARS-CoV-2/genética , Virulência , Redução de Peso
5.
Cell ; 184(13): 3467-3473.e11, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34133941

RESUMO

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.


Assuntos
Adenoviridae/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Feminino , Imunogenicidade da Vacina/imunologia , Memória Imunológica/imunologia , Macaca mulatta , Masculino , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos
6.
Res Sq ; 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34127963

RESUMO

Cardiovascular complications are common in COVID-19 and strongly associated with disease severity and mortality. However, the mechanisms driving cardiac injury and failure in COVID-19 are largely unknown. We performed plasma proteomics on 80 COVID-19 patients and controls, grouped according to disease severity and cardiac involvement. Findings were validated in 305 independent COVID-19 patients and investigated in an animal model. Here we show that senescence-associated secretory proteins, markers of biological aging, strongly associate with disease severity and cardiac involvement even in age-matched cohorts. FSTL3, an indicator of Activin/TGFß signaling, was the most significantly upregulated protein associated with the heart failure biomarker, NTproBNP (ß = 0.4;p adj =4.6x10 - 7 ), while ADAMTS13, a vWF-cleaving protease whose loss-of-function causes microvascular thrombosis, was the most downregulated protein associated with myocardial injury (ß=-0.4;p adj =8x10 - 7 ). Mendelian randomization supported a causal role for ADAMTS13 in myocardial injury. These data provide important new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.

7.
bioRxiv ; 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33532782

RESUMO

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26) vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. In this study, we evaluated the immunogenicity and protective efficacy of reduced doses of Ad26.COV2.S. 30 rhesus macaques were immunized once with 1×10 11 , 5×10 10 , 1.125×10 10 , or 2×10 9 vp Ad26.COV2.S or sham and were challenged with SARS-CoV-2 by the intranasal and intratracheal routes. Vaccine doses as low as 2×10 9 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125×10 10 vp were required for protection in nasal swabs. Activated memory B cells as well as binding and neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show evidence of virologic, immunologic, histopathologic, or clinical enhancement of disease compared with sham controls. These data demonstrate that a single immunization with a relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques. Moreover, our findings show that a higher vaccine dose may be required for protection in the upper respiratory tract compared with the lower respiratory tract.

8.
Abdom Radiol (NY) ; 46(3): 1263-1271, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32939636

RESUMO

OBJECTIVES: To determine the feasibility and safety of ultrasound-guided minimally invasive autopsy in COVID-19 patients. METHODS: 60 patients who expired between 04/22/2020-05/06/2020 due to COVID-19 were considered for inclusion in the study, based on availability of study staff. Minimally invasive ultrasound-guided autopsy was performed with 14G core biopsies through a 13G coaxial needle. The protocol required 20 cores of the liver, 30 of lung, 12 of spleen, 20 of heart, 20 of kidney, 4 of breast, 4 of testis, 2 of skeletal muscle, and 4 of fat with total of 112 cores per patient. Quality of the samples was evaluated by number, size, histology, immunohistochemistry, and in situ hybridization for COVID-19 and PCR-measured viral loads for SARS-CoV-2. RESULTS: Five (5/60, 8%) patients were included. All approached families gave their consent for the minimally invasive autopsy. All organs for biopsy were successfully targeted with ultrasound guidance obtaining all required samples, apart from 2 patients where renal samples were not obtained due to atrophic kidneys. The number, size, and weight of the tissue cores met expectation of the research group and tissue histology quality was excellent. Pathology findings were concordant with previously reported autopsy findings for COVID-19. Highest SARS-CoV-2 viral load was detected in the lung, liver, and spleen that had small to moderate amount, and low viral load in was detected in the heart in 2/5 (40%). No virus was detected in the kidney (0/3, 0%). CONCLUSIONS: Ultrasound-guided percutaneous post-mortem core biopsies can safely provide adequate tissue. Highest SARS-CoV-2 viral load was seen in the lung, followed by liver and spleen with small amount in the myocardium.


Assuntos
Autopsia/métodos , COVID-19/patologia , Ultrassonografia de Intervenção/métodos , Idoso , Idoso de 80 Anos ou mais , Biópsia , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
9.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33065030

RESUMO

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Assuntos
COVID-19/complicações , COVID-19/imunologia , SARS-CoV-2/genética , Trombose/complicações , Doenças Vasculares/complicações , Idoso de 80 Anos ou mais , Animais , Lavagem Broncoalveolar , Proteína C-Reativa/análise , COVID-19/sangue , COVID-19/patologia , Ativação do Complemento , Citocinas/sangue , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/virologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Masculino , Ativação Plaquetária , Trombose/sangue , Trombose/patologia , Transcriptoma , Doenças Vasculares/sangue , Doenças Vasculares/patologia
10.
Nat Med ; 26(11): 1694-1700, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32884153

RESUMO

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Assuntos
Adenoviridae/genética , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/uso terapêutico , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Cricetinae , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Masculino , Mesocricetus , SARS-CoV-2/genética , Índice de Gravidade de Doença , Vacinas Sintéticas/genética , Vacinas Sintéticas/uso terapêutico , Carga Viral
11.
Science ; 369(6505): 812-817, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32434946

RESUMO

An understanding of protective immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for vaccine and public health strategies aimed at ending the global coronavirus disease 2019 (COVID-19) pandemic. A key unanswered question is whether infection with SARS-CoV-2 results in protective immunity against reexposure. We developed a rhesus macaque model of SARS-CoV-2 infection and observed that macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. After the initial viral clearance, animals were rechallenged with SARS-CoV-2 and showed 5 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa compared with after the primary infection. Anamnestic immune responses after rechallenge suggested that protection was mediated by immunologic control. These data show that SARS-CoV-2 infection induced protective immunity against reexposure in nonhuman primates.


Assuntos
Betacoronavirus , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , Betacoronavirus/fisiologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19 , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Imunidade Celular , Imunidade Humoral , Memória Imunológica , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/virologia , Macaca mulatta , Masculino , Mucosa Nasal/virologia , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Recidiva , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA