Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Hum Brain Mapp ; 45(13): e70016, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39254167

RESUMO

Neuropsychiatric symptoms (NPS) are risk factors for Alzheimer's disease (AD) but can also manifest secondary to AD pathology. Mild behavioral impairment (MBI) refers to later-life emergent and persistent NPS that may mark early-stage AD. To distinguish MBI from NPS that are transient or which represent psychiatric conditions (non-MBI NPS), we investigated the effect of applying MBI criteria on NPS associations with AD structural imaging biomarkers and incident cognitive decline. Data for participants (n = 1273) with normal cognition (NC) or mild cognitive impairment (MCI) in the National Alzheimer's Coordinating Center Uniform Data Set were analyzed. NPS status (MBI, non-MBI NPS) was derived from the Neuropsychiatric Inventory Questionnaire and psychiatric history. Normalized measures of bilateral hippocampal (HPC) and entorhinal cortex (EC) volume, and AD meta-region of interest (ROI) mean cortical thickness were acquired from T1-weighted magnetic resonance imaging scans. Multivariable linear and Cox regressions examined NPS associations with imaging biomarkers and incident cognitive decline, respectively. MBI was associated with lower volume and cortical thickness in all ROIs in both NC and MCI, except for EC volume in NC. Non-MBI NPS were only associated with lower HPC volume in NC. Although both of the NPS groups showed higher hazards for MCI/dementia than No NPS, MBI participants showed more rapid decline. Although both types of NPS were linked to HPC atrophy, only NPS that emerged and persisted in later-life, consistent with MBI criteria, were related to AD neurodegenerative patterns beyond the HPC. Moreover, MBI predicted faster progression to dementia than non-MBI NPS.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Masculino , Idoso , Feminino , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Idoso de 80 Anos ou mais , Fatores de Risco , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/patologia , Biomarcadores , Progressão da Doença
2.
Biomed Phys Eng Express ; 10(6)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39178886

RESUMO

Some pathologies such as cancer and dementia require multiple imaging modalities to fully diagnose and assess the extent of the disease. Magnetic resonance imaging offers this kind of polyvalence, but examinations take time and can require contrast agent injection. The flexible synthesis of these imaging sequences based on the available ones for a given patient could help reduce scan times or circumvent the need for contrast agent injection. In this work, we propose a deep learning architecture that can perform the synthesis of all missing imaging sequences from any subset of available images. The network is trained adversarially, with the generator consisting of parallel 3D U-Net encoders and decoders that optimally combines their multi-resolution representations with a fusion operation learned by an attention network trained conjointly with the generator network. We compare our synthesis performance with 3D networks using other types of fusion and a comparable number of trainable parameters, such as the mean/variance fusion. In all synthesis scenarios except one, the synthesis performance of the network using attention-guided fusion was better than the other fusion schemes. We also inspect the encoded representations and the attention network outputs to gain insights into the synthesis process, and uncover desirable behaviors such as prioritization of specific modalities, flexible construction of the representation when important modalities are missing, and modalities being selected in regions where they carry sequence-specific information. This work suggests that a better construction of the latent representation space in hetero-modal networks can be achieved by using an attention network.


Assuntos
Meios de Contraste , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos
3.
Front Dement ; 3: 1380015, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081605

RESUMO

Introduction: White matter hyperintensities (WMHs) and cerebral microbleeds are widespread among aging population and linked with cognitive deficits in mild cognitive impairment (MCI), vascular MCI (V-MCI), and Alzheimer's disease without (AD) or with a vascular component (V-AD). In this study, we aimed to investigate the association between brain age, which reflects global brain health, and cerebrovascular lesion load in the context of pathological aging in diverse forms of clinically-defined neurodegenerative conditions. Methods: We computed brain-predicted age difference (brain-PAD: predicted brain age minus chronological age) in the Comprehensive Assessment of Neurodegeneration and Dementia cohort of the Canadian Consortium on Neurodegeneration in Aging including 70 cognitively intact elderly (CIE), 173 MCI, 88 V-MCI, 50 AD, and 47 V-AD using T1-weighted magnetic resonance imaging (MRI) scans. We used a well-established automated methodology that leveraged fluid attenuated inversion recovery MRIs for precise quantification of WMH burden. Additionally, cerebral microbleeds were detected utilizing a validated segmentation tool based on the ResNet50 network, utilizing routine T1-weighted, T2-weighted, and T2* MRI scans. Results: The mean brain-PAD in the CIE cohort was around zero, whereas the four categories showed a significantly higher mean brain-PAD compared to CIE, except MCI group. A notable association trend between brain-PAD and WMH loads was observed in aging and across the spectrum of cognitive impairment due to AD, but not between brain-PAD and microbleed loads. Discussion: WMHs were associated with faster brain aging and should be considered as a risk factor which imperils brain health in aging and exacerbate brain abnormalities in the context of neurodegeneration of presumed AD origin. Our findings underscore the significance of novel research endeavors aimed at elucidating the etiology, prevention, and treatment of WMH in the area of brain aging.

4.
Front Dement ; 3: 1418037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081608

RESUMO

Introduction: Type 2 diabetes (T2D) has been linked to cognitive impairment and dementia, but its impact on brain cortical structures in individuals prior to or without cognitive impairment remains unclear. Methods: We conducted a systematic review of 2,331 entries investigating cerebral cortical thickness changes in T2D individuals without cognitive impairment, 55 of which met our inclusion criteria. Results: Most studies (45/55) reported cortical brain atrophy and reduced thickness in the anterior cingulate, temporal, and frontal lobes between T2D and otherwise cognitively healthy controls. However, the balance of studies (10/55) reported no significant differences in either cortical or total brain volumes. A few reports also noticed changes in the occipital cortex and its gyri. As part of the reports, less than half of studies (18/55) described a correlation between T2D and hippocampal atrophy. Variability in sample characteristics, imaging methods, and software could affect findings on T2D and cortical atrophy. Discussion: In conclusion, T2D appears linked to reduced cortical thickness, possibly impacting cognition and dementia risk. Microvascular disease and inflammation in T2D may also contribute to this risk. Further research is needed to understand the underlying mechanisms and brain health implications.

5.
J Alzheimers Dis ; 99(3): 843-856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788067

RESUMO

Background: There is a common agreement that Alzheimers disease (AD) is inherently complex; otherwise, a general disagreement remains on its etiological underpinning, with numerous alternative hypotheses having been proposed. Objective: To perform a scoping review of original manuscripts describing hypotheses and theories of AD published in the past decades. Results: We reviewed 131 original manuscripts that fulfilled our inclusion criteria out of more than 13,807 references extracted from open databases. Each entry was characterized as having a single or multifactorial focus and assigned to one of 15 theoretical groupings. Impact was tracked using open citation tools. Results: Three stages can be discerned in terms of hypotheses generation, with three quarter of studies proposing a hypothesis characterized as being single-focus. The most important theoretical groupings were the Amyloid group, followed by Metabolism and Mitochondrial dysfunction, then Infections and Cerebrovascular. Lately, evidence towards Genetics and especially Gut/Brain interactions came to the fore. Conclusions: When viewed together, these multi-faceted reports reinforce the notion that AD affects multiple sub-cellular, cellular, anatomical, and physiological systems at the same time but at varying degree between individuals. The challenge of providing a comprehensive view of all systems and their interactions remains, alongside ways to manage this inherent complexity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Encéfalo/patologia
6.
Front Neuroinform ; 18: 1348113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586183

RESUMO

Introduction: Mathematical models play a crucial role in investigating complex biological systems, enabling a comprehensive understanding of interactions among various components and facilitating in silico testing of intervention strategies. Alzheimer's disease (AD) is characterized by multifactorial causes and intricate interactions among biological entities, necessitating a personalized approach due to the lack of effective treatments. Therefore, mathematical models offer promise as indispensable tools in combating AD. However, existing models in this emerging field often suffer from limitations such as inadequate validation or a narrow focus on single proteins or pathways. Methods: In this paper, we present a multiscale mathematical model that describes the progression of AD through a system of 19 ordinary differential equations. The equations describe the evolution of proteins (nanoscale), cell populations (microscale), and organ-level structures (macroscale) over a 50-year lifespan, as they relate to amyloid and tau accumulation, inflammation, and neuronal death. Results: Distinguishing our model is a robust foundation in biological principles, ensuring improved justification for the included equations, and rigorous parameter justification derived from published experimental literature. Conclusion: This model represents an essential initial step toward constructing a predictive framework, which holds significant potential for identifying effective therapeutic targets in the fight against AD.

7.
Neurol Clin Pract ; 14(3): e200271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38525067

RESUMO

Background and Objectives: Sporadic cerebral small vessel disease (CSVD) is a class of important pathologic processes known to affect the aging brain and to contribute to cognitive impairment. We aimed to identify clinical risk factors associated with postmortem CSVD in middle-aged to older adults. Methods: We developed and tested risk models for their predictive accuracy of a pathologic diagnosis of nonamyloid CSVD and cerebral amyloid angiopathy (CAA) in a retrospective sample of 160 autopsied cases from the Edinburgh Brain Bank. Individuals aged 40 years and older covering the spectrum of healthy aging and common forms of dementia (i.e., highly-prevalent etiologies such as Alzheimer disease (AD), vascular cognitive impairment (VCI), and mixed dementia) were included. We performed binomial logistic regression models using sample splitting and cross-validation methods. Demographics, lifestyle habits, traditional vascular risk factors, chronic medical conditions, APOE4, and cognitive status were assessed as potential predictors. Results: Forty percent of our sample had a clinical diagnosis of dementia (AD = 33, VCI = 26 and mixed = 5) while others were cognitively healthy (n = 96). The mean age at death was 73.8 (SD 14.1) years, and 40% were female. The presence of none-to-mild vs moderate-to-severe nonamyloid CSVD was predicted by our model with good accuracy (area under the curve [AUC] = 0.84, sensitivity [SEN] = 72%, specificity [SPE] = 95%), with the most significant clinical predictors being age, history of cerebrovascular events, and cognitive impairment. The presence of CAA pathology was also predicted with high accuracy (AUC = 0.86, SEN = 93%, SPE = 79%). Significant predictors included alcohol intake, history of cerebrovascular events, and cognitive impairment. In a subset of atypical dementias (n = 24), our models provided poor predictive performance for both nonamyloid CSVD (AUC = 0.50) and CAA (AUC = 0.43). Discussion: CSVD pathology can be predicted with high accuracy based on clinical factors in patients within the spectrum of AD, VCI, and normal aging. Whether this prediction can be enhanced by the addition of fluid and neuroimaging biomarkers warrants additional study. Improving our understanding of clinical determinants of vascular brain health may lead to novel strategies in the prevention and treatment of vascular etiologies contributing to cognitive decline. Classification of Evidence: This study provides Class II evidence that selected clinical factors accurately distinguish between middle-aged to older adults with and without cerebrovascular small vessel disease (amyloid and nonamyloid) pathology.

8.
Front Neuroinform ; 18: 1281656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550514

RESUMO

Alzheimer's disease is a complex, multi-factorial, and multi-parametric neurodegenerative etiology. Mathematical models can help understand such a complex problem by providing a way to explore and conceptualize principles, merging biological knowledge with experimental data into a model amenable to simulation and external validation, all without the need for extensive clinical trials. We performed a scoping review of mathematical models describing the onset and evolution of Alzheimer's disease as a result of biophysical factors following the PRISMA standard. Our search strategy applied to the PubMed database yielded 846 entries. After using our exclusion criteria, only 17 studies remained from which we extracted data, which focused on three aspects of mathematical modeling: how authors addressed continuous time (since even when the measurements are punctual, the biological processes underlying Alzheimer's disease evolve continuously), how models were solved, and how the high dimensionality and non-linearity of models were managed. Most articles modeled Alzheimer's disease at the cellular level, operating on a short time scale (e.g., minutes or hours), i.e., the micro view (12/17); the rest considered regional or brain-level processes with longer timescales (e.g., years or decades) (the macro view). Most papers were concerned primarily with amyloid beta (n = 8), few described both amyloid beta and tau proteins (n = 3), while some considered more than these two factors (n = 6). Models used partial differential equations (n = 3), ordinary differential equations (n = 7), and both partial differential equations and ordinary differential equations (n = 3). Some did not specify their mathematical formalism (n = 4). Sensitivity analyses were performed in only a small number of papers (4/17). Overall, we found that only two studies could be considered valid in terms of parameters and conclusions, and two more were partially valid. This puts the majority (n = 13) as being either invalid or with insufficient information to ascertain their status. This was the main finding of our paper, in that serious shortcomings make their results invalid or non-reproducible. These shortcomings come from insufficient methodological description, poor calibration, or the impossibility of experimentally validating or calibrating the model. Those shortcomings should be addressed by future authors to unlock the usefulness of mathematical models in Alzheimer's disease.

9.
Exp Physiol ; 109(5): 812-827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38372420

RESUMO

Weightlessness during spaceflight can harm various bodily systems, including bone density, muscle mass, strength and cognitive functions. Exercise appears to somewhat counteract these effects. A terrestrial model for this is head-down bedrest (HDBR), simulating gravity loss. This mirrors challenges faced by older adults in extended bedrest and space environments. The first Canadian study, backed by the Canadian Space Agency, Canadian Institutes of Health Research, and Canadian Frailty Network, aims to explore these issues. The study seeks to: (1) scrutinize the impact of 14-day HDBR on physiological, psychological and neurocognitive systems, and (2) assess the benefits of exercise during HDBR. Eight teams developed distinct protocols, harmonized in three videoconferences, at the McGill University Health Center. Over 26 days, 23 participants aged 55-65 underwent baseline measurements, 14 days of -6° HDBR, and 7 days of recovery. Half did prescribed exercise thrice daily combining resistance and endurance exercise for a total duration of 1 h. Assessments included demographics, cardiorespiratory fitness, bone health, body composition, quality of life, mental health, cognition, muscle health and biomarkers. This study has yielded some published outcomes, with more forthcoming. Findings will enrich our comprehension of HDBR effects, guiding future strategies for astronaut well-being and aiding bedrest-bound older adults. By outlining evidence-based interventions, this research supports both space travellers and those enduring prolonged bedrest.


Assuntos
Astronautas , Repouso em Cama , Humanos , Pessoa de Meia-Idade , Idoso , Canadá , Masculino , Feminino , Exercício Físico/fisiologia , Voo Espacial , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Cognição/fisiologia , Qualidade de Vida , Composição Corporal/fisiologia , Saúde Mental , Densidade Óssea/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Ausência de Peso/efeitos adversos
10.
J Neurol ; 271(2): 962-975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902878

RESUMO

BACKGROUND: Within the spectrum of Lewy body disorders (LBD), both Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by gait and balance disturbances, which become more prominent under dual-task (DT) conditions. The brain substrates underlying DT gait variations, however, remain poorly understood in LBD. OBJECTIVE: To investigate the relationship between gray matter volume loss and DT gait variations in LBD. METHODS: Seventy-nine participants including cognitively unimpaired PD, PD with mild cognitive impairment, PD with dementia (PDD), or DLB and 20 cognitively unimpaired controls were examined across a multi-site study. PDD and DLB were grouped together for analyses. Differences in gait speed between single and DT conditions were quantified by dual task cost (DTC). Cortical, subcortical, ventricle, and cerebellum brain volumes were obtained using FreeSurfer. Linear regression models were used to examine the relationship between gray matter volumes and DTC. RESULTS: Smaller amygdala and total cortical volumes, and larger ventricle volumes were associated with a higher DTC across LBD and cognitively unimpaired controls. No statistically significant interaction between group and brain volumes were found. Adding cognitive and motor covariates or white matter hyperintensity volumes separately to the models did not affect brain volume and DTC associations. CONCLUSION: Gray matter volume loss is associated with worse DT gait performance compared to single task gait, across cognitively unimpaired controls through and the LBD spectrum. Impairment in DT gait performance may be driven by age-related cortical neurodegeneration.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Envelhecimento , Doença de Alzheimer/complicações , Marcha , Substância Cinzenta/diagnóstico por imagem , Corpos de Lewy , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/complicações , Doença de Parkinson/complicações
12.
Sci Rep ; 13(1): 16793, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798311

RESUMO

Identifying early signs of neurodegeneration due to Alzheimer's disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18-100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer's Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits ([Formula: see text]), one year apart. The first embedding's principal axis was shown to be positively associated ([Formula: see text]) with participants' age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
13.
Gerontology ; 69(11): 1284-1294, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717560

RESUMO

INTRODUCTION: Head-down bed rest (HDBR) has long been used as an analog to microgravity, and it also enables studying the changes occurring with aging. Exercise is the most effective countermeasure for the deleterious effects of inactivity. The aim of this study was to investigate the efficacy of an exercise countermeasure in healthy older participants on attenuating musculoskeletal deconditioning, cardiovascular fitness level, and muscle strength during 14 days of HDBR as part of the standard measures of the Canadian Space Agency. METHODS: Twenty-three participants (12 males and 11 females), aged 55-65 years, were admitted for a 26-day inpatient stay at the McGill University Health Centre. After 5 days of baseline assessment tests, they underwent 14 days of continuous HDBR followed by 7 days of recovery with repeated tests. Participants were randomized to passive physiotherapy or an exercise countermeasure during the HDBR period consisting of 3 sessions per day of either high-intensity interval training (HIIT) or low-intensity cycling or strength exercises for the lower and upper body. Peak aerobic power (V̇O2peak) was determined using indirect calorimetry. Body composition was assessed by dual-energy X-ray absorptiometry, and several muscle group strengths were evaluated using an adjustable chair dynamometer. A vertical jump was used to assess whole-body power output, and a tilt test was used to measure cardiovascular and orthostatic challenges. Additionally, changes in various blood parameters were measured as well as the effects of exercise countermeasure on these measurements. RESULTS: There were no differences at baseline in main characteristics between the control and exercise groups. The exercise group maintained V̇O2peak levels similar to baseline, whereas it decreased in the control group following 14 days of HDBR. Body weight significantly decreased in both groups. Total and leg lean masses decreased in both groups. However, total body fat mass decreased only in the exercise group. Isometric and isokinetic knee extension muscle strength were significantly reduced in both groups. Peak velocity, flight height, and flight time were significantly reduced in both groups with HDBR. CONCLUSION: In this first Canadian HDBR study in older adults, an exercise countermeasure helped maintain aerobic fitness and lean body mass without affecting the reduction of knee extension strength. However, it was ineffective in protecting against orthostatic intolerance. These results support HIIT as a promising approach to preserve astronaut health and functioning during space missions, and to prevent deconditioning as a result of hospitalization in older adults.


Assuntos
Repouso em Cama , Exercício Físico , Masculino , Feminino , Humanos , Idoso , Repouso em Cama/efeitos adversos , Repouso em Cama/métodos , Canadá , Exercício Físico/fisiologia , Força Muscular , Composição Corporal
14.
Aging Brain ; 3: 100074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180874

RESUMO

This systematic review examined the longitudinal association between amyloid-ß (Aß) accumulation and cognitive decline in cognitively healthy adults. It was conducted using the PubMed, Embase, PsycInfo, and Web of Science databases. The methodological quality of the selected articles was assessed. In fine, seventeen longitudinal clinical studies were included in this review. A minority (seven out of 17) of studies reported a statistically significant association or prediction of cognitive decline with Aß change, measured by positron emission tomography (PET; n = 6) and lumbar puncture (n = 1), with a mean follow-up duration of 3.17 years for cognition and 2.99 years for Aß. The studies reporting significant results with PET found differences in the frontal, posterior cingular, lateral parietal and global (whole brain) cortices as well as in the precuneus. Significant associations were found with episodic memory (n = 6) and global cognition (n = 1). Five of the seven studies using a composite cognitive score found significant results. A quality assessment revealed widespread methodological biases, such as failure to report or account for loss-to follow up and missing data, and failure to report p-values and effect sizes of non-significant results. Overall, the longitudinal association between Aß accumulation and cognitive decline in preclinical Alzheimer's disease remains unclear. The discrepancy in results between studies may be explained in part by the choice of neuroimaging technique used to measure Aß change, the duration of longitudinal studies, the heterogeneity of the healthy preclinical population, and importantly, the use of a composite score to capture cognitive changes with increased sensitivity. More longitudinal studies with larger sample sizes are needed to elucidate this relationship.

15.
Sci Data ; 10(1): 189, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024500

RESUMO

We present the Canadian Open Neuroscience Platform (CONP) portal to answer the research community's need for flexible data sharing resources and provide advanced tools for search and processing infrastructure capacity. This portal differs from previous data sharing projects as it integrates datasets originating from a number of already existing platforms or databases through DataLad, a file level data integrity and access layer. The portal is also an entry point for searching and accessing a large number of standardized and containerized software and links to a computing infrastructure. It leverages community standards to help document and facilitate reuse of both datasets and tools, and already shows a growing community adoption giving access to more than 60 neuroscience datasets and over 70 tools. The CONP portal demonstrates the feasibility and offers a model of a distributed data and tool management system across 17 institutions throughout Canada.


Assuntos
Bases de Dados Factuais , Software , Canadá , Disseminação de Informação
16.
Front Aging Neurosci ; 15: 1088050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091522

RESUMO

Background: Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are part of a spectrum of Lewy body disorders, who exhibit a range of cognitive and gait impairments. Cognitive-motor interactions can be examined by performing a cognitive task while walking and quantified by a dual task cost (DTC). White matter hyperintensities (WMH) on magnetic resonance imaging have also been associated with both gait and cognition. Our goal was to examine the relationship between DTC and WMH in the Lewy body spectrum, hypothesizing DTC would be associated with increased WMH volume. Methods: Seventy-eight participants with PD, PD with mild cognitive impairment (PD-MCI), PD with dementia or DLB (PDD/DLB), and 20 cognitively unimpaired participants were examined in a multi-site study. Gait was measured on an electronic walkway during usual gait, counting backward, animal fluency, and subtracting sevens. WMH were quantified from magnetic resonance imaging using an automated pipeline and visual rating. A median split based on DTC was performed. Models included age as well as measures of global cognition and cardiovascular risk. Results: Compared to cognitively unimpaired participants, usual gait speed was lower and DTC was higher in PD-MCI and PDD/DLB. Low DTC participants had higher usual gait speed. WMH burden was greater in high counting DTC participants. Frontal WMH burden remained significant after adjusting for age, cardiovascular risk and global cognition. Conclusion: Increased DTC was associated with higher frontal WMH burden in Lewy body disorders after adjusting for age, cardiovascular risk, and global cognition. Higher DTC was associated with age.

17.
J Alzheimers Dis ; 93(1): 179-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970893

RESUMO

BACKGROUND: Slowed rates of cognitive decline have been reported in individuals with higher cognitive reserve (CR), but interindividual discrepancies remain unexplained. Few studies have reported a birth cohort effect, favoring later-born individuals, but these studies remain scarce. OBJECTIVE: We aimed to predict cognitive decline in older adults using birth cohorts and CR. METHODS: Within the Alzheimer's Disease Neuroimaging Initiative, 1,041 dementia-free participants were assessed on four cognitive domains (verbal episodic memory; language and semantic memory; attention; executive functions) at each follow-up visit up to 14 years. Four birth cohorts were formed according to the major historical events of the 20th century (1916-1928; 1929-1938; 1939-1945; 1946-1962). CR was operationalized by merging education, complexity of occupation, and verbal IQ. We used linear mixed-effect models to evaluate the effects of CR and birth cohorts on rate of performance change over time. Age at baseline, baseline structural brain health (total brain and total white matter hyperintensities volumes), and baseline vascular risk factors burden were used as covariates. RESULTS: CR was only associated with slower decline in verbal episodic memory. However, more recent birth cohorts predicted slower annual cognitive decline in all domains, except for executive functions. This effect increased as the birth cohort became more recent. CONCLUSION: We found that both CR and birth cohorts influence future cognitive decline, which has strong public policy implications.


Assuntos
Disfunção Cognitiva , Reserva Cognitiva , Memória Episódica , Humanos , Idoso , Coorte de Nascimento , Função Executiva , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia
18.
Magn Reson Med ; 90(1): 343-352, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929810

RESUMO

PURPOSE: Cardiac-related intracranial pulsatility may relate to cerebrovascular health, and this information is contained in BOLD MRI data. There is broad interest in methods to isolate BOLD pulsatility, and the current study examines a deep learning approach. METHODS: Multi-echo BOLD images, respiratory, and cardiac recordings were measured in 55 adults. Ground truth BOLD pulsatility maps were calculated with an established method. BOLD fast Fourier transform magnitude images were used as temporal-frequency image inputs to a U-Net deep learning model. Model performance was evaluated by mean squared error (MSE), mean absolute error (MAE), structural similarity index (SSIM), and mutual information (MI). Experiments evaluated the influence of input channel size, an age group effect during training, dependence on TE, performance without the U-Net architecture, and importance of respiratory preprocessing. RESULTS: The U-Net model generated BOLD pulsatility maps with lower MSE as additional fast Fourier transform input images were used. There was no age group effect for MSE (P > 0.14). MAE and SSIM metrics did not vary across TE (P > 0.36), whereas MI showed a significant TE dependence (P < 0.05). The U-Net versus no U-Net comparison showed no significant difference for MAE (P = 0.059); however, SSIM and MI were significantly different between models (P < 0.001). Within the insula, the cross-correlation values were high (r > 0.90) when comparing the U-Net model trained with/without respiratory preprocessing. CONCLUSION: Multi-echo BOLD pulsatility maps were synthesized from a U-net model that was trained to use temporal-frequency BOLD image inputs. This work adds to the deep learning methods that characterize BOLD physiological signals.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
19.
J Alzheimers Dis ; 91(3): 1059-1071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36565111

RESUMO

BACKGROUND: Excess weight in adulthood leads to health complications such as diabetes, hypertension, or dyslipidemia. Recently, excess weight has also been related to brain atrophy and cognitive decline. Reports show that obesity is linked with Alzheimer's disease (AD)-related changes, such as cerebrovascular damage or amyloid-ß accumulation. However, to date no research has conducted a direct comparison between brain atrophy patterns in AD and obesity. OBJECTIVE: Here, we compared patterns of brain atrophy and amyloid-ß/tau protein accumulation in obesity and AD using a sample of over 1,300 individuals from four groups: AD patients, healthy controls, obese otherwise healthy individuals, and lean individuals. METHODS: We age- and sex-matched all groups to the AD-patients group and created cortical thickness maps of AD and obesity. This was done by comparing AD patients with healthy controls, and obese individuals with lean individuals. We then compared the AD and obesity maps using correlation analyses and permutation-based tests that account for spatial autocorrelation. Similarly, we compared obesity brain maps with amyloid-ß and tau protein maps from other studies. RESULTS: Obesity maps were highly correlated with AD maps but were not correlated with amyloid-ß/tau protein maps. This effect was not accounted for by the presence of obesity in the AD group. CONCLUSION: Our research confirms that obesity-related grey matter atrophy resembles that of AD. Excess weight management could lead to improved health outcomes, slow down cognitive decline in aging, and lower the risk for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Estudos de Coortes , Obesidade/complicações , Atrofia , Tomografia por Emissão de Pósitrons
20.
Neuroimage Clin ; 36: 103204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155321

RESUMO

INTRODUCTION: White matter hyperintensities (WMHs) are common magnetic resonance imaging (MRI) findings in the aging population in general, as well as in patients with neurodegenerative diseases. They are known to exacerbate the cognitive deficits and worsen the clinical outcomes in the patients. However, it is not well-understood whether there are disease-specific differences in prevalence and distribution of WMHs in different neurodegenerative disorders. METHODS: Data included 976 participants with cross-sectional T1-weighted and fluid attenuated inversion recovery (FLAIR) MRIs from the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) cohort of the Canadian Consortium on Neurodegeneration in Aging (CCNA) with eleven distinct diagnostic groups: cognitively intact elderly (CIE), subjective cognitive impairment (SCI), mild cognitive impairment (MCI), vascular MCI (V-MCI), Alzheimer's dementia (AD), vascular AD (V-AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), cognitively intact elderly with Parkinson's disease (PD-CIE), cognitively impaired Parkinson's disease (PD-CI), and mixed dementias. WMHs were segmented using a previously validated automated technique. WMH volumes in each lobe and hemisphere were compared against matched CIE individuals, as well as each other, and between men and women. RESULTS: All cognitively impaired diagnostic groups had significantly greater overall WMH volumes than the CIE group. Vascular groups (i.e. V-MCI, V-AD, and mixed dementia) had significantly greater WMH volumes than all other groups, except for FTD, which also had significantly greater WMH volumes than all non-vascular groups. Women tended to have lower WMH burden than men in most groups and regions, controlling for age. The left frontal lobe tended to have a lower WMH burden than the right in all groups. In contrast, the right occipital lobe tended to have greater WMH volumes than the left. CONCLUSIONS: There were distinct differences in WMH prevalence and distribution across diagnostic groups, sexes, and in terms of asymmetry. WMH burden was significantly greater in all neurodegenerative dementia groups, likely encompassing areas exclusively impacted by neurodegeneration as well as areas related to cerebrovascular disease pathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Frontotemporal , Leucoaraiose , Doenças Neurodegenerativas , Doença de Parkinson , Substância Branca , Masculino , Humanos , Feminino , Idoso , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Doença de Parkinson/patologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/patologia , Estudos Transversais , Canadá , Disfunção Cognitiva/patologia , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Envelhecimento , Demência Frontotemporal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA