Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Protist ; 174(6): 125994, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935085

RESUMO

Cryptophytes are single celled protists found in all aquatic environments. They are composed of a heterotrophic genus, Goniomonas, and a largely autotrophic group comprising many genera. Cryptophytes evolved through secondary endosymbiosis between a host eukaryotic heterotroph and a symbiont red alga. This merger resulted in a four-genome system that includes the nuclear and mitochondrial genomes from the host and a second nuclear genome (nucleomorph) and plastid genome inherited from the symbiont. Here, we make use of different genomes (with potentially distinct evolutionary histories) to perform a phylogenomic study of the early history of cryptophytes. Using ultraconserved elements from the host nuclear genome and symbiont nucleomorph and plastid genomes, we produce a three-genome phylogeny of 91 strains of cryptophytes. Our phylogenetic analyses find that that there are three major cryptophyte clades: Clade 1 comprises Chroomonas and Hemiselmis species, Clade 2, a taxonomically rich clade, comprises at least twelve genera, and Clade 3, comprises the heterotrophic Goniomonas species. Each of these major clades include both freshwater and marine species, but subclades within these clades differ in degrees of niche conservatism. Finally, we discuss priorities for taxonomic revision to Cryptophyceae based on previous studies and in light of these phylogenomic analyses.


Assuntos
Criptófitas , Genoma Mitocondrial , Filogenia , Criptófitas/genética , Evolução Biológica , Eucariotos/genética , Genoma Mitocondrial/genética , Plastídeos/genética
2.
Environ Microbiol ; 25(12): 3280-3297, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845005

RESUMO

Algae with a more diverse suite of pigments can, in principle, exploit a broader swath of the light spectrum through chromatic acclimation, the ability to maximize light capture via plasticity of pigment composition. We grew Rhodomonas salina in wide-spectrum, red, green, and blue environments and measured how pigment composition differed. We also measured expression of key light-capture and photosynthesis-related genes and performed a transcriptome-wide expression analysis. We observed the highest concentration of phycoerythrin in green light, consistent with chromatic acclimation. Other pigments showed trends inconsistent with chromatic acclimation, possibly due to feedback loops among pigments or high-energy light acclimation. Expression of some photosynthesis-related genes was sensitive to spectrum, although expression of most was not. The phycoerythrin α-subunit was expressed two-orders of magnitude greater than the ß-subunit even though the peptides are needed in an equimolar ratio. Expression of genes related to chlorophyll-binding and phycoerythrin concentration were correlated, indicating a potential synthesis relationship. Pigment concentrations and expression of related genes were generally uncorrelated, implying post-transcriptional regulation of pigments. Overall, most differentially expressed genes were not related to photosynthesis; thus, examining associations between light spectrum and other organismal functions, including sexual reproduction and glycolysis, may be important.


Assuntos
Criptófitas , Ficoeritrina , Ficoeritrina/genética , Ficoeritrina/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Fotossíntese/genética , Luz , Expressão Gênica
3.
Heredity (Edinb) ; 130(2): 73-81, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477021

RESUMO

The inheritance of epigenetic marks induced by environmental variation in a previous generation is broadly accepted as a mediator of phenotypic plasticity. Transgenerational effects linking maternal experiences to changes in morphology, gene expression, and life history of successive generations are known across many taxa. While the number of studies linking epigenetic variation to ecological maternal effects is increasing rapidly, few if any attempts have been made to investigate molecular mechanisms governing epigenetic functions in the context of ecologically relevant maternal effects. Daphnia make an ideal model for investigating molecular epigenetic mechanisms and ecological maternal effects because they will reproduce asexually in the lab. Daphnia are also known to have strong maternal effects, involving a variety of traits and environmental variables. Using two clones of Daphnia pulex, we investigated the plasticity of life history and DNA methyltransferase (Dnmt) gene expression with respect to food limitation within and across generations. We found strong evidence of genotypic variation of responses of life history and Dnmt expression to low food diets, both within and across generations. In general, effects of offspring diet were larger than either the direct maternal effect or offspring-maternal environment interactions, but the direction of the maternal effect was usually in the opposite direction of the within-generation effect. For both life history and Dnmt expression, we also found that when offspring had low food, effects of the maternal environment were stronger than when offspring had high food.


Assuntos
Daphnia , Herança Materna , Animais , Daphnia/genética , Reprodução/fisiologia , Fenótipo , Dieta
4.
Sci Rep ; 12(1): 2354, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149730

RESUMO

Macromolecular damage leading to cell, tissue and ultimately organ dysfunction is a major contributor to aging. Intracellular reactive oxygen species (ROS) resulting from normal metabolism cause most damage to macromolecules and the mitochondria play a central role in this process as they are the principle source of ROS. The relationship between naturally occurring variations in the mitochondrial (MT) genomes leading to correspondingly less or more ROS and macromolecular damage that changes the rate of aging associated organismal decline remains relatively unexplored. MT complex I, a component of the electron transport chain (ETC), is a key source of ROS and the NADH dehydrogenase subunit 5 (ND5) is a highly conserved core protein of the subunits that constitute the backbone of complex I. Using Daphnia as a model organism, we explored if the naturally occurring sequence variations in ND5 correlate with a short or long lifespan. Our results indicate that the short-lived clones have ND5 variants that correlate with reduced complex I activity, increased oxidative damage, and heightened expression of ROS scavenger enzymes. Daphnia offers a unique opportunity to investigate the association between inherited variations in components of complex I and ROS generation which affects the rate of aging and lifespan.


Assuntos
Daphnia/crescimento & desenvolvimento , Daphnia/metabolismo , Estresse Oxidativo , Animais , Daphnia/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Longevidade , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS One ; 16(5): e0251668, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989339

RESUMO

Ankistrodesmus falcatus is a globally distributed freshwater chlorophyte that is a candidate for biofuel production, is used to study the effects of toxins on aquatic communities, and is used as food in zooplankton research. Each of these research fields is transitioning to genomic tools. We created a reference transcriptome for of A. falcatus using NextGen sequencing and de novo assembly methods including Trinity, Velvet-Oases, and EvidentialGene. The assembled transcriptome has a total of 17,997 contigs, an N50 value of 2,462, and a GC content of 64.8%. BUSCO analysis recovered 83.3% of total chlorophyte BUSCOs and 82.5% of the eukaryotic BUSCOs. A portion (7.9%) of these supposedly single-copy genes were found to have transcriptionally active, distinct duplicates. We annotated the assembly using the dammit annotation pipeline, resulting in putative functional annotation for 68.89% of the assembly. Using available rbcL sequences from 16 strains (10 species) of Ankistrodesmus, we constructed a neighbor-joining phylogeny to illustrate genetic distances of our A. falcatus strain to other members of the genus. This assembly will be valuable for researchers seeking to identify Ankistrodesmus sequences in metatranscriptomic and metagenomic field studies and in experiments where separating expression responses of zooplankton and their algal food sources through bioinformatics is important.


Assuntos
Clorofíceas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Clorofíceas/genética , Clorofíceas/metabolismo
6.
Evolution ; 75(6): 1513-1524, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751559

RESUMO

Spontaneous mutations fuel evolutionary processes and differ in consequence, but the consequences depend on the environment. Biophysical considerations of protein thermostability predict that warm temperatures may systematically increase the deleteriousness of mutation. We sought to test whether mutation reduced fitness more when measured in an environment that reflected climate change projections for temperature. We investigated the effects of spontaneous mutations on life history, size, and fitness in 21 mutation accumulation lines and 12 control lines of Daphnia pulex at standard and elevated (+4℃) temperatures. Warmer temperature accelerated life history and reduced body length and clutch sizes. Mutation led to reduced mean clutch sizes and fitness estimates at both temperatures. We found no evidence of a systematic temperature-mutation interaction on trait means, although some lines showed evidence of beneficial mutation at one temperature and deleterious mutation at the other. However, trait variances are also influenced by mutation, and we observed increased variances due to mutation for most traits. For variance of the intrinsic rate of increase and some reproductive traits, we found significant temperature-mutation interactions, with a larger increase due to mutation in the warmer environment. This suggests that selection on new mutations will be more efficient at elevated temperatures.


Assuntos
Mudança Climática , Daphnia/genética , Aptidão Genética , Acúmulo de Mutações , Animais , Tamanho Corporal , Tamanho da Ninhada , Características de História de Vida , Mutagênese , Fenótipo , Temperatura
7.
Proc Biol Sci ; 286(1902): 20190655, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31088271

RESUMO

Evolutionary biologists have long sought to identify phenotypic traits whose evolution enhances an organism's performance in its environment. Diversification of traits related to resource acquisition can occur owing to spatial or temporal resource heterogeneity. We examined the ability to capture light in the Cryptophyta, a phylum of single-celled eukaryotic algae with diverse photosynthetic pigments, to better understand how acquisition of an abiotic resource may be associated with diversification. Cryptophytes originated through secondary endosymbiosis between an unknown eukaryotic host and a red algal symbiont. This merger resulted in distinctive pigment-protein complexes, the cryptophyte phycobiliproteins, which are the products of genes from both ancestors. These novel complexes may have facilitated diversification across environments where the spectrum of light available for photosynthesis varies widely. We measured light capture and pigments under controlled conditions in a phenotypically and phylogenetically diverse collection of cryptophytes. Using phylogenetic comparative methods, we found that phycobiliprotein characteristics were evolutionarily associated with diversification of light capture in cryptophytes, while non-phycobiliprotein pigments were not. Furthermore, phycobiliproteins were evolutionarily labile with repeated transitions and reversals. Thus, the endosymbiotic origin of cryptophyte phycobiliproteins provided an evolutionary spark that drove diversification of light capture, the resource that is the foundation of photosynthesis.


Assuntos
Evolução Biológica , Criptófitas/fisiologia , Fotossíntese/fisiologia , Ficobiliproteínas/fisiologia , Simbiose
8.
Evolution ; 73(4): 792-802, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30843603

RESUMO

Variation in eye size is ubiquitous across taxa. Increased eye size is correlated with improved vision and increased fitness via shifts in behavior. Tests of the drivers of eye size evolution have focused on macroevolutionary studies evaluating the importance of light availability. Predator-induced mortality has recently been identified as a potential driver of eye size variation. Here, we tested the influence of increased predation by the fish predator, the alewife (Alosa pseudoharengus) on eye size evolution in waterfleas (Daphnia ambigua) from lakes in Connecticut. We quantified the relative eye size of Daphnia from lakes with and without alewife using wild-caught and third-generation laboratory reared specimens. This includes comparisons between lakes where alewife are present seasonally (anadromous) or permanently (landlocked). Wild-caught specimens did not differ in eye size across all lakes. However, third-generation lab reared Daphnia from lakes with alewife, irrespective of the form of alewife predation, exhibited significantly larger eyes than Daphnia from lakes without alewife. This genetically based increase in eye size may enhance the ability of Daphnia to detect predators. Alternatively, such shifts in eye size may be an indirect response to Daphnia aggregating at the bottom of lakes. To test these mechanisms, we collected Daphnia as a function of depth and found that eye size differed in Daphnia found at the surface versus the bottom of the water column between anadromous alewife and no alewife lakes. However, we found no evidence of Daphnia aggregating at the bottom of lakes. Such results indicate that the evolution of a larger eye may be explained by a connection between eyes and enhanced survival. We discuss the cause of the lack of concordance in eye size variation between our phenotypic and genetic specimens and the ultimate drivers of eye size.


Assuntos
Daphnia/anatomia & histologia , Peixes , Comportamento Predatório , Distribuição Animal , Animais , Connecticut , Olho/anatomia & histologia , Feminino , Cadeia Alimentar , Lagos
9.
J Phycol ; 55(3): 552-564, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30468692

RESUMO

Phenotypic traits associated with light capture and phylogenetic relationships were characterized in 34 strains of diversely pigmented marine and freshwater cryptophytes. Nuclear SSU and partial LSU rDNA sequence data from 33 of these strains plus an additional 66 strains produced a concatenated rooted maximum likelihood tree that classified the strains into 7 distinct clades. Molecular and phenotypic data together support: (i) the reclassification of Cryptomonas irregularis NIES 698 to the genus Rhodomonas, (ii) revision of phycobiliprotein (PBP) diversity within the genus Hemiselmis to include cryptophyte phycocyanin (Cr-PC) 569, (iii) the inclusion of previously unidentified strain CCMP 2293 into the genus Falcomonas, even though it contains cryptophyte phycoerythrin 545 (Cr-PE 545), and (iv) the inclusion of previously unidentified strain CCMP 3175, which contains Cr-PE 545, in a clade with PC-containing Chroomonas species. A discriminant analysis-based model of group membership correctly predicted 70.6% of the clades using three traits: PBP concentration · cell-1 , the wavelength of PBP maximal absorption, and habitat. Non-PBP pigments (alloxanthin, chl-a, chl-c2 , α-carotene) did not contribute significantly to group classification, indicating the potential plasticity of these pigments and the evolutionary conservation of the PBPs. Pigment data showed evidence of trade-offs in investments in PBPs vs. chlorophylls (a +c2 ).


Assuntos
Criptófitas , Água Doce , DNA Ribossômico , Ficocianina , Filogenia
10.
PLoS One ; 13(9): e0203230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30199541

RESUMO

Spartina alterniflora, marsh grass, is a vegetative apomicticly-reproducing halophyte native to marshes along the east coast of the United States and invasive across the world. S. alterniflora provides many ecosystem services including, but not limited to, water filtration, habitats for invertebrates, and sediment retention. Widespread diebacks of longstanding marsh grass colonies launched extensive investigations into probable mechanisms leading to patchy diebacks. There is still current debate as to the causes of a marsh dieback but environmental stress is acknowledged as a constant. Spatial epigenetic variation could contribute to variation of stress susceptibility, but the scale and structure of epigenetic variation is unknown. The current study investigates patterns of epigenetic variation in a natural population of S. alterniflora. This study examines variation of global DNA methylation within and among clones of the marsh grass Spartina alterniflora using an ELISA-like microplate reaction and observed significant heterogeneity of global DNA methylation within and among clones of S. alterniflora across the North Inlet basin, as well as significant differences of global methylation between adults and sexually produced seedlings. The present study also characterized differences for plants in a section of the population that experienced an acute marsh dieback in the year 2001 and have subsequently recolonized, finding a significant positive correlation between cytosine methylation and time period of colonization. The significant heterogeneity of global DNA methylation both within and among clones observed within this natural population of S. alterniflora and potential impacts from hypersaline environments at North Inlet suggests the need for more in-depth epigenetic studies to fully understand DNA methylation within an ecological context. Future studies should consider the effects of varying saline conditions on both global DNA and gene specific methylation.


Assuntos
Poaceae/genética , Poaceae/metabolismo , Citosina/metabolismo , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Ecossistema , Epigênese Genética , Poaceae/crescimento & desenvolvimento , Salinidade , South Carolina , Áreas Alagadas
11.
J Mol Evol ; 84(1): 12-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28004131

RESUMO

Daphnia pulex has the largest known family of opsins, genes critical for photoreception and vision in animals. This diversity may be functionally redundant, arising from recent processes, or ancient duplications may have been preserved due to distinct functions and independent contributions to fitness. We analyzed opsins in D. pulex and its distant congener Daphnia magna. We identified 48 opsins in the D. pulex genome and 32 in D. magna. We inferred the complement of opsins in the last common ancestor of all Daphnia and evaluated the history of opsin duplication and loss. We further analyzed sequence variation to assess possible functional diversification among Daphnia opsins. Much of the opsin expansion occurred before the D. pulex-D. magna split more than 145 Mya, and both Daphnia lineages preserved most ancient opsins. More recent expansion occurred in pteropsins and long-wavelength visual opsins in both species, particularly D. pulex. Recent duplications were not random: the same ancestral genes duplicated independently in each modern species. Most ancient and some recent duplications involved differentiation at residues known to influence spectral tuning of visual opsins. Arthropsins show evidence of gene conversion between tandemly arrayed paralogs in functionally important domains. Intron-exon gene structure was generally conserved within clades inferred from sequences, although pteropsins showed substantial intron size variation. Overall, our analyses support the hypotheses that diverse opsins are maintained due to diverse functional roles in photoreception and vision, that functional diversification is both ancient and recent, and that multiple evolutionary processes have influenced different types of opsins.


Assuntos
Duplicação Gênica/genética , Opsinas/genética , Animais , Evolução Biológica , Daphnia/genética , Bases de Dados de Proteínas , Evolução Molecular , Variação Genética/genética , Genoma/genética , Íntrons/genética , Filogenia
12.
Aging (Albany NY) ; 8(2): 402-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26978617

RESUMO

The ability to appropriately respond to proteotoxic stimuli is a major determinant of longevity and involves induction of various heat shock response (HSR) genes, which are essential to cope with cellular and organismal insults throughout lifespan. The activity of NAD+-dependent deacetylase Sir2, originally discovered in yeast, is known to be essential for effective HSR and longevity. Our previous work on HSR inDaphnia pulicaria indicated a drastic reduction of the HSR in older organisms. In this report we investigate the role of Sir2 in regulating HSR during the lifespan of D. pulicaria. We cloned Daphnia Sir2 open reading frame (ORF) to characterize the enzyme activity and confirmed that the overall function of Sir2 was conserved in Daphnia. The Sir2 mRNA levels increased while the enzyme activity declined with age and considering that Sir2 activity regulates HSR, this explains the previously observed age-dependent decline in HSR. Finally, we tested the effect of Sir2 knockdown throughout adult life by using our new RNA interference (RNAi) method by feeding. Sir2 knockdown severely reduced both the median lifespan as well as significantly increased mortality following heat shock. Our study provides the first characterization and functional study of Daphnia Sir2.


Assuntos
Envelhecimento/fisiologia , Daphnia/fisiologia , Resposta ao Choque Térmico/fisiologia , Longevidade/fisiologia , Sirtuína 2/metabolismo , Animais , Western Blotting , Técnicas de Silenciamento de Genes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Genome Res ; 26(1): 60-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518480

RESUMO

Knowledge of the genome-wide rate and spectrum of mutations is necessary to understand the origin of disease and the genetic variation driving all evolutionary processes. Here, we provide a genome-wide analysis of the rate and spectrum of mutations obtained in two Daphnia pulex genotypes via separate mutation-accumulation (MA) experiments. Unlike most MA studies that utilize haploid, homozygous, or self-fertilizing lines, D. pulex can be propagated ameiotically while maintaining a naturally heterozygous, diploid genome, allowing the capture of the full spectrum of genomic changes that arise in a heterozygous state. While base-substitution mutation rates are similar to those in other multicellular eukaryotes (about 4 × 10(-9) per site per generation), we find that the rates of large-scale (>100 kb) de novo copy-number variants (CNVs) are significantly elevated relative to those seen in previous MA studies. The heterozygosity maintained in this experiment allowed for estimates of gene-conversion processes. While most of the conversion tract lengths we report are similar to those generated by meiotic processes, we also find larger tract lengths that are indicative of mitotic processes. Comparison of MA lines to natural isolates reveals that a majority of large-scale CNVs in natural populations are removed by purifying selection. The mutations observed here share similarities with disease-causing, complex, large-scale CNVs, thereby demonstrating that MA studies in D. pulex serve as a system for studying the processes leading to such alterations.


Assuntos
Daphnia/genética , Deleção de Genes , Duplicação Gênica , Taxa de Mutação , Animais , Variações do Número de Cópias de DNA , Evolução Molecular , Feminino , Estudos de Associação Genética , Variação Genética , Heterozigoto , Masculino , Análise de Sequência de DNA
14.
BMC Biotechnol ; 15: 91, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446824

RESUMO

BACKGROUND: RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Daphnia, a freshwater microcrustacean, is an emerging model organism for studying cellular and molecular processes involved in aging, development, and ecotoxicology especially in the context of environmental variation. However, in spite of the availability of a fully sequenced genome of Daphnia pulex, meaningful mechanistic studies have been hampered by a lack of molecular techniques to alter gene expression. A microinjection method for gene knockdown by RNAi has been described but the need for highly specialized equipment as well as technical expertise limits the wider application of this technique. In addition to being expensive and technically challenging, microinjections can only target genes expressed during embryonic stages, thus making it difficult to achieve effective RNAi in adult organisms. RESULTS: In our present study we present a bacterial feeding method for RNAi in Daphnia. We used a melanic Daphnia species (Daphnia melanica) that exhibits dark pigmentation to target phenoloxidase, a key enzyme in the biosynthesis of melanin. We demonstrate that our RNAi method results in a striking phenotype and that the phenoloxidase mRNA expression and melanin content, as well as survival following UV insults, are diminished as a result of RNAi. CONCLUSIONS: Overall, our results establish a new method for RNAi in Daphnia that significantly advances further use of Daphnia as a model organism for functional genomics studies. The method we describe is relatively simple and widely applicable for knockdown of a variety of genes in adult organisms.


Assuntos
Daphnia/genética , Técnicas de Silenciamento de Genes/métodos , Modelos Biológicos , Interferência de RNA , Animais , Daphnia/microbiologia , Escherichia coli/genética , Melaninas/metabolismo , Monofenol Mono-Oxigenase/metabolismo
15.
PLoS One ; 10(5): e0127196, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25962144

RESUMO

Telomeres, comprised of short repetitive sequences, are essential for genome stability and have been studied in relation to cellular senescence and aging. Telomerase, the enzyme that adds telomeric repeats to chromosome ends, is essential for maintaining the overall telomere length. A lack of telomerase activity in mammalian somatic cells results in progressive shortening of telomeres with each cellular replication event. Mammals exhibit high rates of cell proliferation during embryonic and juvenile stages but very little somatic cell proliferation occurs during adult and senescent stages. The telomere hypothesis of cellular aging states that telomeres serve as an internal mitotic clock and telomere length erosion leads to cellular senescence and eventual cell death. In this report, we have examined telomerase activity, processivity, and telomere length in Daphnia, an organism that grows continuously throughout its life. Similar to insects, Daphnia telomeric repeat sequence was determined to be TTAGG and telomerase products with five-nucleotide periodicity were generated in the telomerase activity assay. We investigated telomerase function and telomere lengths in two closely related ecotypes of Daphnia with divergent lifespans, short-lived D. pulex and long-lived D. pulicaria. Our results indicate that there is no age-dependent decline in telomere length, telomerase activity, or processivity in short-lived D. pulex. On the contrary, a significant age dependent decline in telomere length, telomerase activity and processivity is observed during life span in long-lived D. pulicaria. While providing the first report on characterization of Daphnia telomeres and telomerase activity, our results also indicate that mechanisms other than telomere shortening may be responsible for the strikingly short life span of D. pulex.


Assuntos
Envelhecimento/genética , Proteínas de Artrópodes/genética , Daphnia/genética , Telomerase/genética , Encurtamento do Telômero , Telômero/química , Sequência de Aminoácidos , Animais , Divisão Celular , Senescência Celular/genética , Feminino , Regulação da Expressão Gênica , Longevidade/genética , Masculino , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência
16.
Am Nat ; 185(2): 243-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25616142

RESUMO

Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.


Assuntos
Evolução Biológica , Interação Gene-Ambiente , Mutação , Animais , Daphnia , Meio Ambiente , Feminino
17.
Artigo em Inglês | MEDLINE | ID: mdl-24865992

RESUMO

Eye size is an indicator of visual capability, and macroevolutionary patterns reveal that taxa inhabiting dim environments have larger eyes than taxa from bright environments. This suggests that the light environment is a key driver of variation in eye size. Yet other factors not directly linked with visual tasks (i.e., non-sensory factors) may influence eye size. We sought to jointly investigate the roles of sensory (light) and non-sensory factors (food) in determining eye size and ask whether non-sensory factors could constrain visual capabilities. We tested environmental influences on eye size in four species of the freshwater crustacean Daphnia, crossing bright and dim light levels with high and low resource levels. We measured absolute eye size and eye size relative to body size in early and late adulthood. In general, Daphnia reared on low resources had smaller eyes, both absolutely and relatively. In contrast to the dominant macroevolutionary pattern, phenotypic plasticity in response to light was rarely significant. These patterns of phenotypic plasticity were true for overall diameter of the eye and the diameter of individual facets. We conclude that non-sensory environmental factors can influence sensory systems, and in particular, that resource availability may be an important constraint on visual capability.


Assuntos
Daphnia/anatomia & histologia , Daphnia/fisiologia , Ecologia , Meio Ambiente , Olho/anatomia & histologia , Visão Ocular/fisiologia , Fatores Etários , Análise de Variância , Animais , Tamanho Corporal , Feminino , Masculino , Tamanho do Órgão , Estimulação Luminosa
18.
Mech Ageing Dev ; 139: 1-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814302

RESUMO

The longevity of an organism is directly related to its ability to effectively cope with cellular stress. Heat shock response (HSR) protects the cells against accumulation of damaged proteins after exposure to elevated temperatures and also in aging cells. To understand the role of Hsp70 in regulating life span of Daphnia, we examined the expression of Hsp70 in two ecotypes that exhibit strikingly different life spans. Daphnia pulicaria, the long lived ecotype, showed a robust Hsp70 induction as compared to the shorter lived Daphnia pulex. Interestingly, the short-lived D. pulex isolates showed no induction of Hsp70 at the mid point in their life span. In contrast to this, the long-lived D. pulicaria continued to induce Hsp70 expression at an equivalent age. We further show that the Hsp70 expression was induced at transcriptional level in response to heat shock. The transcription factor responsible for Hsp70 induction, heat shock factor-1 (HSF-1), although present in aged organisms did not exhibit DNA-binding capability. Thus, the decline of Hsp70 induction in old organisms could be attributed to a decline in HSF-1's DNA-binding activity. These results for the first time, present a molecular analysis of the relationship between HSR and life span in Daphnia.


Assuntos
Proteínas de Artrópodes/biossíntese , Daphnia/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/biossíntese , Longevidade/fisiologia , Animais
19.
J Exp Zool A Ecol Genet Physiol ; 321(1): 48-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24133070

RESUMO

Longevity is a highly variable life history trait and its variation is attributable to both genetic and environmental factors. Exploring well-known environmental factors in a new model system is a useful approach to explore taxonomic variation in plasticity of longevity. We examined responsiveness of the Daphnia pulex clone TCO to potentially related interventions that have been reported to extend lifespan: resveratrol and dietary restriction. First, we examined effects of resveratrol on lifespan and fecundity in TCO which were grown at moderate (12K cells Ankistrodesmus falcatus mL⁻¹) and high (20K cells A. falcatus mL⁻¹) food levels. We found no evidence for lifespan extension by resveratrol, but found a reduction of lifetime fecundity. The effect of resveratrol on fecundity was more pronounced early in life. We then conducted an additional life table to test the effect of dietary restriction on TCO. Surprisingly, reduced food level did not extend the lifespan of TCO, which contrasts with previous studies in D. pulex. Our results suggest that variation in the response to dietary restriction might be more common than previously thought. If resveratrol activates genes involved in the response to dietary restriction, genetic polymorphisms in dietary restriction will influence responses to resveratrol. Thus, this experiment suggests that careful re-examination of resveratrol effects using diverse genotypes is required.


Assuntos
Restrição Calórica , Daphnia/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Classificação , Daphnia/efeitos dos fármacos , Daphnia/genética , Fertilidade/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Polimorfismo Genético , Reprodução/efeitos dos fármacos , Reprodução/genética , Resveratrol
20.
J Plankton Res ; 35(2): 253-259, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23467752

RESUMO

The freshwater crustacean Daphnia is an emerging model system in the biology of aging. Diversity in aging patterns is thought to be caused by ecological variation in selection on age-specific performance. Previous work in Daphnia has shown a strong correspondence between selective differences and genetic variation in aging in the Daphnia pulex species complex. However, recent evidence suggests obligate asexuality could account for the more rapid aging found in pond genotypes compared with lake genotypes without invoking differences in selection. Evolutionary biologists have to date assumed equivalent operation of neutral processes when comparing aging across populations, but a shift in the breeding system changes the basic dynamics of neutral evolution. To test the hypothesis that the breeding system could explain the short lifespans of pond-dwelling Daphnia, we compared aging of sexual and asexual Daphnia clones from temporary ponds. Our data contradict the breeding system hypothesis. Differences in aging between the breeding systems were slight, and trended in the opposite direction from that predicted: asexual clones had longer lifespans and appeared to age more slowly than sexual clones. We conclude that divergent selection between habitats remains the best explanation for differences in aging between Daphnia species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA