Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biophys J ; 121(16): 3023-3033, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859421

RESUMO

Collagen fibrils are the major constituents of the extracellular matrix, which provides structural support to vertebrate connective tissues. It is widely assumed that the superstructure of collagen fibrils is encoded in the primary sequences of the molecular building blocks. However, the interplay between large-scale architecture and small-scale molecular interactions makes the ab initio prediction of collagen structure challenging. Here, we propose a model that allows us to predict the periodic structure of collagen fibers and the axial offset between the molecules, purely on the basis of simple predictive rules for the interaction between amino acid residues. With our model, we identify the sequence-dependent collagen fiber geometries with the lowest free energy and validate the predicted geometries against the available experimental data. We propose a procedure for searching for optimal staggering distances. Finally, we build a classification algorithm and use it to scan 11 data sets of vertebrate fibrillar collagens, and predict the periodicity of the resulting assemblies. We analyzed the experimentally observed variance of the optimal stagger distances across species, and find that these distances, and the resulting fibrillar phenotypes, are evolutionary well preserved. Moreover, we observed that the energy minimum at the optimal stagger distance is broad in all cases, suggesting a further evolutionary adaptation designed to improve the assembly kinetics. Our periodicity predictions are not only in good agreement with the experimental data on collagen molecular staggering for all collagen types analyzed, but also for synthetic peptides. We argue that, with our model, it becomes possible to design tailor-made, periodic collagen structures, thereby enabling the design of novel biomimetic materials based on collagen-mimetic trimers.


Assuntos
Materiais Biomiméticos , Colágeno , Materiais Biomiméticos/química , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Colágenos Fibrilares , Peptídeos/química
2.
Nat Commun ; 12(1): 5383, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508091

RESUMO

The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration.


Assuntos
Adaptação Fisiológica , Exoesqueleto/fisiologia , Invertebrados/fisiologia , Estado de Hidratação do Organismo/fisiologia , Exoesqueleto/anatomia & histologia , Exoesqueleto/ultraestrutura , Animais , Invertebrados/anatomia & histologia , Invertebrados/ultraestrutura , Microscopia Eletrônica
3.
Chem Sci ; 12(28): 9839-9850, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34349958

RESUMO

Nanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds. However, current formulations often employ open structures that achieve efficient loading of active agents, but that suffer undesired leakage and instability of the payloads over time. Here, a straightforward strategy that overcomes these issues is presented, in which protein nanogels are encapsulated within single crystals of calcite (CaCO3). Demonstrating our approach with bovine serum albumin (BSA) nanogels loaded with (bio)active compounds, including doxorubicin (a chemotherapeutic drug) and lysozyme (an antibacterial enzyme), we show that these nanogels can be occluded within calcite host crystals at levels of up to 45 vol%. Encapsulated within the dense mineral, the active compounds are stable against harsh conditions such as high temperature and pH, and controlled release can be triggered by a simple reduction of the pH. Comparisons with analogous systems - amorphous calcium carbonate, mesoporous vaterite (CaCO3) polycrystals, and calcite crystals containing polymer vesicles - demonstrate the superior encapsulation performance of the nanogel/calcite system. This opens the door to encapsulating a broad range of existing nanocarrier systems within single crystal hosts for the efficient storage, transport and controlled release of various active guest species.

4.
Magn Reson Chem ; 59(9-10): 1048-1061, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33729624

RESUMO

43 Ca nuclear magnetic resonance (NMR) spectroscopy has been extensively applied to the detailed study of octacalcium phosphate (OCP), Ca8 (HPO4 )2 (PO4 )4 .5H2 O, and hybrid derivatives involving intercalated metabolic acids (viz., citrate, succinate, formate, and adipate). Such phases are of importance in the development of a better understanding of bone structure. High-resolution 43 Ca magic angle spinning (MAS) experiments, including double-rotation (DOR) 43 Ca NMR, as well as 43 Ca{1 H} rotational echo DOR (REDOR) and 31 P{43 Ca} REAPDOR NMR spectra, were recorded on a 43 Ca-labeled OCP phase at very high magnetic field (20 T), and complemented by ab initio calculations of NMR parameters using the Gauge-Including Projector Augmented Wave-density functional theory (GIPAW-DFT) method. This enabled a partial assignment of the eight inequivalent Ca2+ sites of OCP. Natural-abundance 43 Ca MAS NMR spectra were then recorded for the hybrid organic-inorganic derivatives, revealing changes in the 43 Ca lineshape. In the case of the citrate derivative, these could be interpreted on the basis of computational models of the structure. Overall, this study highlights the advantages of combining high-resolution 43 Ca NMR experiments and computational modeling for studying complex hybrid biomaterials.

5.
Angew Chem Int Ed Engl ; 59(29): 11937-11942, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32219972

RESUMO

Alkaptonuria (AKU) is a rare disease characterized by high levels of homogentisic acid (HGA); patients suffer from tissue ochronosis: dark brown pigmentation, especially of joint cartilage, leading to severe early osteoarthropathy. No molecular mechanism links elevated HGA to ochronosis; the pigment's chemical identity is still not known, nor how it induces joint cartilage degradation. Here we give key insight on HGA-derived pigment composition and collagen disruption in AKU cartilage. Synthetic pigment and pigmented human cartilage tissue both showed hydroquinone-resembling NMR signals. EPR spectroscopy showed that the synthetic pigment contains radicals. Moreover, we observed intrastrand disruption of collagen triple helix in pigmented AKU human cartilage, and in cartilage from patients with osteoarthritis. We propose that collagen degradation can occur via transient glycyl radicals, the formation of which is enhanced in AKU due to the redox environment generated by pigmentation.


Assuntos
Alcaptonúria/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Pigmentação , Espectroscopia de Ressonância de Spin Eletrônica , Ácido Homogentísico/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Oxirredução , Pigmentos Biológicos/química
6.
Sci Rep ; 10(1): 3397, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099005

RESUMO

Collagen fibrils are central to the molecular organization of the extracellular matrix (ECM) and to defining the cellular microenvironment. Glycation of collagen fibrils is known to impact on cell adhesion and migration in the context of cancer and in model studies, glycation of collagen molecules has been shown to affect the binding of other ECM components to collagen. Here we use TEM to show that ribose-5-phosphate (R5P) glycation of collagen fibrils - potentially important in the microenvironment of actively dividing cells, such as cancer cells - disrupts the longitudinal ordering of the molecules in collagen fibrils and, using KFM and FLiM, that R5P-glycated collagen fibrils have a more negative surface charge than unglycated fibrils. Altered molecular arrangement can be expected to impact on the accessibility of cell adhesion sites and altered fibril surface charge on the integrity of the extracellular matrix structure surrounding glycated collagen fibrils. Both effects are highly relevant for cell adhesion and migration within the tumour microenvironment.


Assuntos
Colágeno Tipo I/química , Matriz Extracelular/química , Ribosemonofosfatos/química , Animais , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Glicosilação , Humanos , Ribosemonofosfatos/metabolismo
7.
Cell Rep ; 27(11): 3124-3138.e13, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189100

RESUMO

Biomineralization of the extracellular matrix is an essential, regulated process. Inappropriate mineralization of bone and the vasculature has devastating effects on patient health, yet an integrated understanding of the chemical and cell biological processes that lead to mineral nucleation remains elusive. Here, we report that biomineralization of bone and the vasculature is associated with extracellular poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerases in response to oxidative and/or DNA damage. We use ultrastructural methods to show poly(ADP-ribose) can form both calcified spherical particles, reminiscent of those found in vascular calcification, and biomimetically calcified collagen fibrils similar to bone. Importantly, inhibition of poly(ADP-ribose) biosynthesis in vitro and in vivo inhibits biomineralization, suggesting a therapeutic route for the treatment of vascular calcifications. We conclude that poly(ADP-ribose) plays a central chemical role in both pathological and physiological extracellular matrix calcification.


Assuntos
Biomineralização , Dano ao DNA , Poli Adenosina Difosfato Ribose/metabolismo , Calcificação Vascular/metabolismo , Adolescente , Adulto , Idoso , Animais , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Bovinos , Linhagem Celular , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoblastos/patologia , Estresse Oxidativo , Ratos , Ratos Wistar , Ovinos
8.
RSC Adv ; 9(46): 26686-26690, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528564

RESUMO

Sensitivity enhancement by isotope enrichment and DNP NMR enables detection of minor but biologically relevant species in native intact bone, including nucleic acids, choline from phospholipid headgroups, and histidinyl and hydroxylysyl groups. Labelled matrix from the aggressive osteosarcoma K7M2 cell line confirms the assignments of nucleic acid signals arising from purine, pyrimidine, ribose, and deoxyribose species. Detection of these species is an important and necessary step in elucidating the atomic level structural basis of their functions in intact tissue.

9.
Chem Commun (Camb) ; 54(89): 12570-12573, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30299444

RESUMO

The sparse but functionally essential post-translational collagen modification 5-hydroxylysine can undergo further transformations, including crosslinking, O-glycosylation, and glycation. Dynamic nuclear polarization (DNP) and stable isotope enriched lysine incorporation provide sufficient solid-state NMR sensitivity to identify these adducts directly in skin and vascular smooth muscle cell extracellular matrix (ECM), without extraction procedures, by comparison with chemical shifts of model compounds. Thus, DNP provides access to the elucidation of structural consequences of collagen modifications in intact tissue.

10.
Sci Rep ; 8(1): 13809, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218106

RESUMO

Fibrillar collagens have mechanical and biological roles, providing tissues with both tensile strength and cell binding sites which allow molecular interactions with cell-surface receptors such as integrins. A key question is: how do collagens allow tissue flexibility whilst maintaining well-defined ligand binding sites? Here we show that proline residues in collagen glycine-proline-hydroxyproline (Gly-Pro-Hyp) triplets provide local conformational flexibility, which in turn confers well-defined, low energy molecular compression-extension and bending, by employing two-dimensional 13C-13C correlation NMR spectroscopy on 13C-labelled intact ex vivo bone and in vitro osteoblast extracellular matrix. We also find that the positions of Gly-Pro-Hyp triplets are highly conserved between animal species, and are spatially clustered in the currently-accepted model of molecular ordering in collagen type I fibrils. We propose that the Gly-Pro-Hyp triplets in fibrillar collagens provide fibril "expansion joints" to maintain molecular ordering within the fibril, thereby preserving the structural integrity of ligand binding sites.


Assuntos
Colágeno/química , Colágeno/metabolismo , Prolina/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Feminino , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/fisiologia , Glicina/química , Hidroxiprolina/química , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Peptídeos/química , Prolina/fisiologia , Conformação Proteica , Ovinos
11.
Solid State Nucl Magn Reson ; 95: 1-5, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30170130

RESUMO

Octacalcium phosphate (OCP; Ca8(HPO4)2(PO4)4. 5H2O) is a plausible precursor phase of biological hydroxyapatite, which composites with a number of biologically relevant organic metabolites. Widely used material science physicochemical structure determination techniques successfully characterize the mineral component of these composites but leave details of the structure, and interactions with mineral, of the organic component almost completely obscure. The metabolic linear di-acids succinate (SUC) and adipate (ADI) differentially expand the hydrated (100) layer of OCP. 13C13C correlation (proton driven spin diffusion, PDSD) experiments on OCP composited with (U-13C4)-SUC, and (U13C6)-ADI, show that the two di-acids per unit cell adopt non-centrosymmetric but mutually identical structures. 13C{31P}, rotational echo double resonance (REDOR) shows that one end of each linear di-acid is displaced further from the surface of the apatitic OCP layer relative to the other end. Overall the results indicate two di-acids per unit cell disposed perpendicularly across the OCP hydrated layer with one carboxylate of each di-acid substituting a hydrated surface OCP phosphate group. This study re-affirms the unique advantages of ssNMR in elucidating structural details of organic-inorganic biocomposites, and thereby mechanisms underlying the roles of small metabolites in influencing biomineralization mechanisms and outcomes.


Assuntos
Adipatos/química , Fosfatos de Cálcio/química , Espectroscopia de Ressonância Magnética , Ácido Succínico/química
12.
Acc Chem Res ; 51(7): 1621-1629, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29931970

RESUMO

The extracellular matrix of a tissue is as important to life as the cells within it. Its detailed molecular structure defines the environment of a tissue's cells and thus their properties, including differentiation and metabolic status. Collagen proteins are the major component of extracellular matrices. Self-assembled collagen fibrils provide both specific mechanical properties to handle external stresses on tissues and, at the molecular level, well-defined protein binding sites to interact with cells. How the cell-matrix interactions are maintained against the stresses on the tissue is an important and as yet unanswered question. Similarly, how collagen molecular and fibrillar structures change in aging and disease is a crucial open question. Solid-state NMR spectroscopy offers insight into collagen molecular conformation in intact in vivo and in vitro tissues, and in this Account we review how NMR spectroscopy is beginning to provide answers to these questions. In vivo 13C,15N labeling of the extracellular matrix has given insight into collagen molecular dynamics and generated multidimensional NMR "fingerprints" of collagen molecular structure that allow comparison of local collagen conformation between tissues. NMR studies have shown that charged collagen residues (Lys, Arg) adopt extended-side-chain conformations in the fibrillar structure to facilitate charge-charge interactions between neighboring collagen molecules, while hydrophobic residues (Leu, Ile) fold along the collagen molecular axis to minimize the hydrophobic area exposed to surrounding water. Detailed NMR and molecular modeling work has shown that the abundant Gly-Pro-Hyp (Hyp = hydroxyproline) triplets in collagen triple helices confer well-defined flexibility because the proline is conformationally metastable, in contrast to the expectation that these triplets confer structural rigidity. The alignment of the Gly-Pro-Hyp triplets within the fibril structure means that the Gly-Pro-Hyp molecular flexibility generates fibril flexibility. The fibrillar bands of Gly-Pro-Hyp are highly correlated with collagen ligand binding sites, leading to the hypothesis that the fibril alignment of Gly-Pro-Hyp triplets is essential to protect collagen-ligand binding against external stresses on the tissue. Non-enzymatic chemistry between collagen side-chain amine groups (Lys, Arg) and reducing sugars-glycation-is an important source of matrix structural change in aging and disease. Glycation leads to stiffening of collagen fibrils, which is widely speculated to be the result of intermolecular cross-linking. The chemistry of non-enzymatic glycation has been extensively detailed through NMR studies and has been shown to lead to side-chain modifications as the majority reaction products, rather than intermolecular cross-links, with resultant molecular misalignment in the fibrils. Thus, a picture is beginning to emerge in which collagen glycation causes stiffening through misalignment of collagen molecular flexible regions rather than intermolecular cross-linking, meaning that new thinking is needed on how to alleviate collagen structural changes in aging and disease.


Assuntos
Colágeno/química , Aminoácidos/química , Animais , Glicosilação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Processamento de Proteína Pós-Traducional , Relação Estrutura-Atividade
13.
J Biomol NMR ; 66(2): 93-98, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27699524

RESUMO

We have prepared mouse fur extensively 13C,15N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. 13C double quantum-single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro. Also the partial resolution of the amide signals into two signal envelopes comprising of α-helical, and ß-sheet/random coil components, enables resolution of otherwise overlapped α-carbon signals into two distinct cross peak families corresponding to these respective secondary structural regions. The increase in resolution conferred by extensive labelling offers new opportunities to study the chemical fate and structural environments of specific atom and amino acid types under the influence of commercial processes, and therapeutic or cosmetic treatments.


Assuntos
Pelo Animal/química , Queratinas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Aminoácidos , Animais , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Ressonância Magnética Nuclear Biomolecular
14.
Nat Mater ; 15(8): 903-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135858

RESUMO

Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

15.
J Biomol NMR ; 63(2): 119-23, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26407607

RESUMO

An appreciable level of isotope labelling is essential for future NMR structure elucidation of mammalian biomaterials, which are either poorly expressed, or unexpressable, using micro-organisms. We present a detailed protocol for high level (13)C enrichment even in slow turnover murine biomaterials (fur keratin), using a customized diet supplemented with commercial labelled algal hydrolysate and formulated as a gel to minimize wastage, which female mice consumed during pregnancy and lactation. This procedure produced approximately eightfold higher fur keratin labelling in pups, exposed in utero and throughout life to label, than in adults exposed for the same period, showing both the effectiveness, and necessity, of this approach.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Animais , Camundongos , Ressonância Magnética Nuclear Biomolecular/métodos , Especificidade de Órgãos
16.
Sci Rep ; 5: 12556, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26220399

RESUMO

Collagens, the most abundant proteins in mammals, are defined by their triple-helical structures and distinctive Gly-Xaa-Yaa repeating sequence, where Xaa is often proline and Yaa, hydroxyproline (Hyp/O). It is known that hydroxyproline in the Yaa position stabilises the triple helix, and that lack of proline hydroxylation in vivo leads to dysfunctional collagen extracellular matrix assembly, due to a range of factors such as a change in hydration properties. In addition, we note that in model peptides, when Yaa is unmodified proline, the Xaa proline has a strong propensity to adopt an endo ring conformation, whilst when Yaa is hydroxyproline, the Xaa proline adopts a range of endo and exo conformations. Here we use a combination of solid-state NMR spectroscopy and potential energy landscape modelling of synthetic triple-helical collagen peptides to understand this effect. We show that hydroxylation of the Yaa proline causes the Xaa proline ring conformation to become metastable, which in turn confers flexibility on the triple helix.


Assuntos
Colágeno/química , Hidroxiprolina/química , Hidroxilação , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Peptídeos/química , Prolina/química , Estrutura Secundária de Proteína
17.
J Magn Reson ; 253: 98-110, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25797009

RESUMO

Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.


Assuntos
Osso e Ossos/química , Osso e Ossos/fisiologia , Calcificação Fisiológica/fisiologia , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Humanos
18.
Chem Commun (Camb) ; 51(25): 5250-2, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25415185

RESUMO

We have developed a strategy for selective imaging of collagen in live foetal ovine osteoblasts. Our approach involves the incorporation of an azide-tagged proline in the biosynthesis of collagen followed by labelling using a strain-promoted [3+2] azide-alkyne cycloaddition reaction.


Assuntos
Azidas/química , Colágeno/análise , Osteoblastos/química , Osteoblastos/citologia , Prolina/química , Alcinos/química , Sobrevivência Celular , Células Cultivadas , Ciclização , Humanos
19.
Science ; 344(6185): 742-6, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833391

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is useful to determine molecular structure in tissues grown in vitro only if their fidelity, relative to native tissue, can be established. Here, we use multidimensional NMR spectra of animal and in vitro model tissues as fingerprints of their respective molecular structures, allowing us to compare the intact tissues at atomic length scales. To obtain spectra from animal tissues, we developed a heavy mouse enriched by about 20% in the NMR-active isotopes carbon-13 and nitrogen-15. The resulting spectra allowed us to refine an in vitro model of developing bone and to probe its detailed structure. The identification of an unexpected molecule, poly(adenosine diphosphate ribose), that may be implicated in calcification of the bone matrix, illustrates the analytical power of this approach.


Assuntos
Desenvolvimento Ósseo , Calcificação Fisiológica , Ressonância Magnética Nuclear Biomolecular/métodos , Poli Adenosina Difosfato Ribose/análise , Animais , Isótopos de Carbono , Matriz Extracelular/química , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Modelos Biológicos , Isótopos de Nitrogênio , Ovinos
20.
Proc Natl Acad Sci U S A ; 111(14): E1354-63, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706850

RESUMO

We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets.


Assuntos
Osso e Ossos/metabolismo , Ácido Cítrico/metabolismo , Minerais/metabolismo , Animais , Fosfatos de Cálcio/metabolismo , Cavalos , Espectroscopia de Ressonância Magnética , Difração de Pó , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA