RESUMO
ABSTRACT: Lang, HM, Duffourc, MM, Bazyler, CD, Ramsey, MW, and Gentles, JA. The relationship between cell-free DNA and resistance training volume load. J Strength Cond Res 38(6): 1008-1012, 2024-The primary purpose of this study was to assess the sensitivity of cell-free DNA (cf-DNA) to different resistance training volume loads. The secondary purpose was to examine the relationship between change in cf-DNA and relative strength. Researchers hypothesized that (a) cf-DNA concentrations would increase with increasing volume load and (b) increases in relative strength would result in predicted decreases to %Δ of cf-DNA. Thirty subjects were recruited for this study, 15 men and 15 women. Blood was collected through venous draws into 4-ml vacutainers at 3 time points: immediately before (T1), after 3 sets (T2), and after 6 sets (T3) of the back squat exercise. A critical alpha of 0.05 was set for inferential statistics. A repeated-measures ANOVA showed that cf-DNA increased significantly from T1 (407.72 ± 320.83) to T2 (1,244.6 ± 875.83) ( p < 0.01) and T1 (407.72 ± 320.83) to T3 (1,331.15 ± 1,141.66) ( p < 0.01), whereas no difference was found from T2 to T3 ( p = 1.00). The linear regression model used to examine the predictive capabilities relative strength had on cf-DNA %Δ from T1 to T3 was found to be significant ( p = 0.04; R2 = 0.15). The results of this study demonstrate the short response of cf-DNA in relation to variations in resistance training volume load. Results also demonstrated the positive relationship between relative strength and cf-DNA %Δ. The current study builds on the body of research that cf-DNA provides insight regarding the level of immune response after exercise training.
Assuntos
Ácidos Nucleicos Livres , Força Muscular , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Masculino , Feminino , Adulto , Ácidos Nucleicos Livres/sangue , Adulto Jovem , Força Muscular/fisiologiaRESUMO
BACKGROUND AND OBJECTIVES: Integrase strand transfer inhibitors (INSTIs), dolutegravir, elvitegravir, and raltegravir, have become integral in the treatment of HIV, with close monitoring of continued efficacy and tolerability. As side effect occurrence varies among subjects receiving these drugs, we sought to perform an exploratory analysis examining the role of several single-nucleotide polymorphisms (SNPs) on drug concentration changes, selected clinical outcomes, and the occurrence of subject-reported adverse events. METHODS: Adults (aged ≥ 18 years) receiving INSTI-based regimens for treatment of HIV were recruited and genotyped with an iPLEX ADME PGx Pro v1.0 Panel. Multiple linear or logistic regression with covariates [age, sex, BMI, regimen (in the across-regimen group), regimen duration, and baseline variables (for continuous parameters)] was used to detect significant (p < 0.05) association of selected clinical data with genetic variants within the study population. RESULTS: In a sample (n = 88) with a median age of 52.5 years (IQR 45.7-57.2) being predominately Caucasian (88.6%) and male (86.4%), this exploratory study discovered several associations between variables and SNPs, when using INSTIs. Abnormal dream occurrence was statistically different (p = 0.028) between regimens. Additionally, several SNPs were found to be associated with adverse event profiles primarily when all regimens were grouped together. CONCLUSION: The associations found in this study point to a need for further assessment, within the population living with HIV, of factors contributing to unfavorable subject outcomes. These exploratory findings require confirmation in larger studies, which then may investigate pharmacogenetic mechanisms.
Assuntos
Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/uso terapêutico , Farmacogenética , Adulto , Feminino , Genótipo , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Oxazinas , Piperazinas , Piridonas , Quinolonas/uso terapêutico , Raltegravir Potássico/uso terapêuticoRESUMO
Altered gut microbial diversity has been associated with several chronic disease states, including heart failure. Stimulation of the vagus nerve, which innervates the heart and abdominal organs, is proving to be an effective therapeutic in heart failure. We hypothesized that cervical vagus nerve stimulation (VNS) could alter fecal flora and prevent aberrations observed in fecal samples from heart failure animals. To determine whether microbial abundances were altered by pressure overload (PO), leading to heart failure and VNS therapy, a VNS pulse generator was implanted with a stimulus lead on either the left or right vagus nerve before creation of PO by aortic constriction. Animals received intermittent, open-loop stimulation or sham treatment, and their heart function was monitored by echocardiography. Left ventricular end-systolic and diastolic volumes, as well as cardiac output, were impaired in PO animals compared with baseline. VNS mitigated these effects. Metagenetic analysis was then performed using 16S rRNA sequencing to identify bacterial genera present in fecal samples. The abundance of 10 genera was significantly altered by PO, 8 of which were mitigated in animals receiving either left- or right-sided VNS. Metatranscriptomics analyses indicate that the abundance of genera that express genes associated with ATP-binding cassette transport and amino sugar/nitrogen metabolism was significantly changed following PO. These gut flora changes were not observed in PO animals subjected to VNS. These data suggest that VNS prevents aberrant gut flora following PO, which could contribute to its beneficial effects in heart failure patients.
Assuntos
Fezes/microbiologia , Coração/fisiopatologia , Estimulação do Nervo Vago , Disfunção Ventricular Esquerda/terapia , Animais , Cobaias , Masculino , Disfunção Ventricular Esquerda/microbiologia , Disfunção Ventricular Esquerda/fisiopatologiaRESUMO
The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-ß superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD.
Assuntos
Astrócitos/metabolismo , Proteína Morfogenética Óssea 7/metabolismo , Transtorno Depressivo Maior/patologia , Regulação da Expressão Gênica/fisiologia , Locus Cerúleo/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína Morfogenética Óssea 7/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Masculino , Microdissecção , Pessoa de Meia-Idade , Ratos , Estudos Retrospectivos , Tirosina 3-Mono-Oxigenase/metabolismo , Adulto JovemRESUMO
Chronic Granulomatous Disease (CGD), a disorder of the NADPH oxidase system, results in phagocyte functional defects and subsequent infections with bacterial and fungal pathogens (such as Aspergillus species and Candida albicans). Deletions and missense, frameshift, or nonsense mutations in the gp91phox gene (also termed CYBB), located in the Xp21.1 region of the X chromosome, are associated with the most common form of CGD. When larger X-chromosomal deletions occur, including the XK gene deletion, a so-called "Contiguous Gene Deletion Syndrome" may result. The contiguous gene deletion syndrome is known to associate the Kell phenotype/McLeod syndrome with diseases such as X-linked chronic granulomatous disease, Duchenne muscular dystrophy, and X-linked retinitis pigmentosa. These patients are often complicated and management requires special attention to the various facets of the syndrome.
RESUMO
This study analyzed the interaction of the sleep aid eszopiclone (ESZ) and antidepressant fluoxetine (FLX) on social defeat stress (SDS) in the mouse. Beta adrenoreceptors, brain-derived neurotrophic factor (BDNF) and cAMP response element binding protein (CREB) expression in the hippocampus and frontal cortex were also analyzed. Subjects were adult male 'intruder' C57/B6 mice that were exposed to a retired 'resident' male breeder ICR mouse in this animal's home cage for a 5 min period for each of 10 consecutive days, and the resident established physical dominance. The following day, all animals were assigned to one of four drug treatment groups, and treatment was given for up to 18 days: vehicle, ESZ only (3mg/kg), FLX (10mg/kg) only, or ESZ+FLX. A social interaction test was given on days 1, 5, 10, and 15 of drug treatment to assess SDS. Results showed that the ESZ+FLX group spent less time in avoidance zones during the interaction test at days 1 and 5, and more time in the interaction zone at day 5 compared to defeated mice given vehicle. All drug treatment groups spent more time in the interaction zone compared to defeated mice given vehicle on day 1 as well as day 10. SDS completely dissipated by the fourth interaction test according to both behavioral measures. Neurochemically, SDS did not produce changes in any marker analyzed. This study shows the combination of ESZ and FLX alleviated SDS, but a neurochemical correlate remains elusive.
Assuntos
Antidepressivos de Segunda Geração/farmacologia , Compostos Azabicíclicos/farmacologia , Depressão/tratamento farmacológico , Depressão/psicologia , Fluoxetina/farmacologia , Hipnóticos e Sedativos/farmacologia , Piperazinas/farmacologia , Estresse Psicológico/psicologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/etiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Zopiclona , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Meio Social , Estresse Psicológico/complicaçõesRESUMO
Regions along the Mediterranean and in southern Asia have lower prostate cancer incidence compared to the rest of the world. It has been hypothesized that one of the potential contributing factors for this low incidence includes a higher intake of tocotrienols. Here we examine the potential of γ-tocotrienol (GT3) to reduce prostate cancer proliferation and focus on elucidating pathways by which GT3 could exert a growth-inhibitory effect on prostate cancer cells. We find that the γ and δ isoforms of tocotrienol are more effective at inhibiting the growth of prostate cancer cell lines (PC-3 and LNCaP) compared with the γ and δ forms of tocopherol. Knockout of PPAR-γ and GT3 treatment show inhibition of prostate cancer cell growth, through a partially PPAR-γ-dependent mechanism. GT3 treatment increases the levels of the 15-lipoxygenase-2 enzyme, which is responsible for the conversion of arachidonic acid to the PPAR-γ-activating ligand 15-S-hydroxyeicosatrienoic acid. In addition, the latent precursor and the mature forms of TGFß2 are down-regulated after treatment with GT3, with concomitant disruptions in TGFß receptor I, SMAD-2, p38, and NF-κB signaling.
Assuntos
Antineoplásicos/farmacologia , Cromanos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Vitamina E/análogos & derivados , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Neoplasias da Próstata/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Vitamina E/farmacologiaRESUMO
PURPOSE: To determine whether cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed 6 wk of progressively increasing intensity stationary cycle cycling. METHODS: In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. RESULTS: GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator 1 alpha and phospho-5'-adenosine monophosphate-activated protein kinase) were unchanged, but the muscle hypertrophy pathway component, phospho-mammalian target of rapamycin (mTOR), increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training but also increased in Type I fibers (34%). CONCLUSION: Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers, and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis.
Assuntos
Ciclismo/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Biópsia , Citocromos c/metabolismo , Feminino , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismoRESUMO
Chronic inflammation and dietary fat consumption correlates with an increase in prostate cancer. Our previous studies in the colon have demonstrated that gamma-tocopherol treatment could upregulate the expression of peroxisome proliferator-activated preceptors (PPAR) gamma, a nuclear receptor involved in fatty acid metabolism as well modulation of cell proliferation and differentiation. In this study, we explored the possibility that gamma-tocopherol could induce growth arrest in PC-3 prostate cancer cells through the regulation of fatty acid metabolism. Growth arrest (40%) and PPAR gamma mRNA and protein upregulation was achieved with gamma-tocopherol within 6 h. gamma-Tocopherol-mediated growth arrest was demonstrated to be PPAR gamma dependent using the agonist GW9662 and a PPAR gamma dominant negative vector. gamma-tocopherol was shown not to be a direct PPAR gamma ligand, but rather 15-S-HETE (an endogenous PPAR gamma ligand) was upregulated by gamma-tocopherol treatment. 15-Lipoxygenase-2, a tumor suppressor and the enzyme that converts arachidonic acid to 15-S-HETE, was upregulated at 3 h following gamma-tocopherol treatment. Expression of proteins downstream of the PPAR gamma pathway were examined. Cyclin D1, cyclin D3, bcl-2, and NFkappa B proteins were found to be downregulated following gamma-tocopherol treatment. These data demonstrate that the growth arrest mediated by gamma-tocopherol follows a PPAR-gamma-dependent mechanism.
Assuntos
Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/metabolismo , PPAR gama/metabolismo , Neoplasias da Próstata/patologia , gama-Tocoferol/farmacologia , Adenocarcinoma/patologia , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais , Técnicas de Inativação de Genes , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ligantes , Masculino , PPAR gama/agonistas , PPAR gama/genética , Próstata/citologia , Ligação Proteica , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , gama-Tocoferol/metabolismoRESUMO
Laser capture microdissection (LCM) is a versatile computer-assisted dissection method that permits collection of tissue samples with a remarkable level of anatomical resolution. LCM's application to the study of human brain pathology is growing, although it is still relatively underutilized, compared with other areas of research. The present study examined factors that affect the utility of LCM, as performed with an Arcturus Veritas, in the study of gene expression in the human brain using frozen tissue sections. LCM performance was ascertained by determining cell capture efficiency and the quality of RNA extracted from human brain tissue under varying conditions. Among these, the relative humidity of the laboratory where tissue sections are stained, handled, and submitted to LCM had a profound effect on the performance of the instrument and on the quality of RNA extracted from tissue sections. Low relative humidity in the laboratory, i.e., 6-23%, was conducive to little or no degradation of RNA extracted from tissue following staining and fixation and to high capture efficiency by the LCM instrument. LCM settings were optimized as described herein to permit the selective capture of astrocytes, oligodendrocytes, and noradrenergic neurons from tissue sections containing the human locus coeruleus, as determined by the gene expression of cell-specific markers. With due regard for specific limitations, LCM can be used to evaluate the molecular pathology of individual cell types in post-mortem human brain.
Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Umidade/efeitos adversos , Microdissecção/métodos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Adolescente , Adulto , Contagem de Células , Perfilação da Expressão Gênica/métodos , Humanos , Lasers , Locus Cerúleo/metabolismo , Pessoa de Meia-Idade , Norepinefrina/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Adulto JovemRESUMO
Several inducers of chlamydial persistence have been described, including interferon-gamma (IFN-gamma), IFN-alpha, IFN-beta, and tumour necrosis factor-alpha (TNF-alpha) exposure, and iron, amino acid or glucose deprivation. A tissue-culture model of Chlamydia trachomatis/herpes simplex virus type-2 (HSV-2) co-infection indicates that viral co-infection stimulates the formation of persistent chlamydiae. This study was designed to ascertain whether co-infection-induced persistence is mediated by a previously characterized mechanism. Luminex assays indicate that IFN-gamma, IFN-alpha, and TNF-alpha are not released from co-infected cells. Semiquantitative RT-PCR studies demonstrate that IFN-beta, IFN-gamma, indoleamine 2,3-dioxygenase, lymphotoxin-alpha and inducible nitric oxide synthase are not expressed during co-infection. These data indicate that viral-induced persistence is not stimulated by any persistence-associated cytokine. Supplementation of co-infected cells with excess amino acids, iron-saturated holotransferrin, glucose or a combination of amino acids and iron does not restore chlamydial infectivity, demonstrating that HSV-2-induced persistence is not mediated by depletion of these nutrients. Finally, inclusions within co-infected cells continue to enlarge and incorporate C(6)-NBD-ceramide, indicating that HSV-2 co-infection does not inhibit vesicular transport to the developing inclusion. Collectively these data demonstrate that co-infection-induced persistence is not mediated by any currently characterized persistence inducer or anti-chlamydial pathway. Previous studies indicate that HSV-2 attachment and/or entry into the host cell is sufficient for stimulating chlamydial persistence, suggesting that viral attachment and/or entry may trigger a novel host pathway which restricts chlamydial development.
Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Herpesvirus Humano 2/crescimento & desenvolvimento , Aminoácidos/metabolismo , Linhagem Celular , Chlamydia trachomatis/patogenicidade , Perfilação da Expressão Gênica , Humanos , Corpos de Inclusão/microbiologia , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Interferon-alfa/metabolismo , Interferon beta/biossíntese , Interferon gama/metabolismo , Ferro/metabolismo , Linfotoxina-alfa/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/metabolismo , Virulência/efeitos dos fármacosRESUMO
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.