Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38081262

RESUMO

We describe the first implementation of a Josephson Traveling Wave Parametric Amplifier (JTWPA) in an axion dark matter search. The operation of the JTWPA for a period of about two weeks achieved sensitivity to axion-like particle dark matter with axion-photon couplings above 10-13 Ge V-1 over a narrow range of axion masses centered around 19.84 µeV by tuning the resonant frequency of the cavity over the frequency range of 4796.7-4799.5 MHz. The JTWPA was operated in the insert of the axion dark matter experiment as part of an independent receiver chain that was attached to a 0.56-l cavity. The ability of the JTWPA to deliver high gain over a wide (3 GHz) bandwidth has engendered interest from those aiming to perform broadband axion searches, a longstanding goal in this field.

2.
Phys Rev Lett ; 131(10): 101002, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739367

RESUMO

We report the first result of a direct search for a cosmic axion background (CaB)-a relativistic background of axions that is not dark matter-performed with the axion haloscope, the Axion Dark Matter eXperiment (ADMX). Conventional haloscope analyses search for a signal with a narrow bandwidth, as predicted for dark matter, whereas the CaB will be broad. We introduce a novel analysis strategy, which searches for a CaB induced daily modulation in the power measured by the haloscope. Using this, we repurpose data collected to search for dark matter to set a limit on the axion photon coupling of a CaB originating from dark matter cascade decay via a mediator in the 800-995 MHz frequency range. We find that the present sensitivity is limited by fluctuations in the cavity readout as the instrument scans across dark matter masses. Nevertheless, we suggest that these challenges can be surmounted using superconducting qubits as single photon counters, and allow ADMX to operate as a telescope searching for axions emerging from the decay of dark matter. The daily modulation analysis technique we introduce can be deployed for various broadband rf signals, such as other forms of a CaB or even high-frequency gravitational waves.

3.
Phys Rev Lett ; 127(26): 261803, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029490

RESUMO

We report the results from a haloscope search for axion dark matter in the 3.3-4.2 µeV mass range. This search excludes the axion-photon coupling predicted by one of the benchmark models of "invisible" axion dark matter, the Kim-Shifman-Vainshtein-Zakharov model. This sensitivity is achieved using a large-volume cavity, a superconducting magnet, an ultra low noise Josephson parametric amplifier, and sub-Kelvin temperatures. The validity of our detection procedure is ensured by injecting and detecting blind synthetic axion signals.

4.
Rev Sci Instrum ; 92(12): 124502, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972408

RESUMO

Axion dark matter experiment ultra-low noise haloscope technology has enabled the successful completion of two science runs (1A and 1B) that looked for dark matter axions in the 2.66-3.1 µeV mass range with Dine-Fischler-Srednicki-Zhitnisky sensitivity [Du et al., Phys. Rev. Lett. 120, 151301 (2018) and Braine et al., Phys. Rev. Lett. 124, 101303 (2020)]. Therefore, it is the most sensitive axion search experiment to date in this mass range. We discuss the technological advances made in the last several years to achieve this sensitivity, which includes the implementation of components, such as the state-of-the-art quantum-noise-limited amplifiers and a dilution refrigerator. Furthermore, we demonstrate the use of a frequency tunable microstrip superconducting quantum interference device amplifier in run 1A, and a Josephson parametric amplifier in run 1B, along with novel analysis tools that characterize the system noise temperature.

5.
Phys Rev Lett ; 124(10): 101303, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216421

RESUMO

This Letter reports on a cavity haloscope search for dark matter axions in the Galactic halo in the mass range 2.81-3.31 µeV. This search utilizes the combination of a low-noise Josephson parametric amplifier and a large-cavity haloscope to achieve unprecedented sensitivity across this mass range. This search excludes the full range of axion-photon coupling values predicted in benchmark models of the invisible axion that solve the strong CP problem of quantum chromodynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA