Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2225797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061987

RESUMO

Cholinesterase (ChE) enzymes have been identified as diagnostic markers for Alzheimer disease (AD). Substrate-based probes have been synthesised to detect ChEs but they have not detected changes in ChE distribution associated with AD pathology. Probes are typically screened using spectrophotometric methods with pure enzyme for specificity and kinetics. However, the biochemical properties of ChEs associated with AD pathology are altered. The present work was undertaken to determine whether the Karnovsky-Roots (KR) histochemical method could be used to evaluate probes at the site of pathology. Thirty thioesters and esters were synthesised and evaluated using enzyme kinetic and KR methods. Spectrophotometric methods demonstrated all thioesters were ChE substrates, yet only a few provided staining in the brain with the KR method. Esters were ChE substrates with interactions with brain ChEs. These results suggest that the KR method may provide an efficient means to screen compounds as probes for imaging AD-associated ChEs.


Assuntos
Doença de Alzheimer , Colinesterases , Humanos , Colinesterases/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Inibidores da Colinesterase/química , Encéfalo , Acetilcolinesterase/metabolismo
2.
Chemistry ; 27(64): 16021-16027, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34550623

RESUMO

Oxidative addition represents a critical elementary step in myriad catalytic transformations. Here, the importance of thoughtful ligand design cannot be overstated. In this work, we report the intermolecular activation of iodobenzene (PhI) at a coordinatively saturated 18-electron [Ni0 (diphosphine)2 ] complex bearing a Lewis acidic secondary coordination sphere. Whereas alkyl-substituted diphosphine complexes of Group 10 are known to be unreactive in such reactions, we show that [Ni0 (P2 BCy 4 )2 ] (P2 BCy 4 =1,2-bis(di(3-dicyclohexylboraneyl)-propylphosphino)ethane) is competent for room-temperature PhI cleavage to give [NiII (P2 BCy 4 )(Ph)(I)]. This difference in oxidative addition reactivity has been scrutinized computationally - an outcome that is borne out in ring-opening to provide the reactive precursor - for [Ni0 (P2 BCy 4 )2 ], a "boron-trapped" 16-electron κ1 -diphosphine Ni(0) complex. Moreover, formation of [NiII (P2 BCy 4 )(Ph)(I)] is inherent to the P2 BCy 4 secondary coordination sphere: treatment of the Lewis adduct, [Ni0 (P2 BCy 4 )2 (DMAP)8 ] with PhI provides [NiII (P2 BCy 4 )2 (DMAP)8 (I)]I via iodine-atom abstraction and not a [NiII (Ph)(I)(diphosphine)] compound - an unusual secondary sphere effect. Finally, the reactivity of [Ni0 (P2 BCy 4 )2 ] with 4-iodopyridine was surveyed, which resulted in a pyridyl-borane linked oligomer. The implications of these outcomes are discussed in the context of designing strongly donating, and yet labile diphosphine ligands for use in a critical bond activation step relevant to catalysis.

3.
Dalton Trans ; 50(36): 12440-12447, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34397061

RESUMO

Cobalt hydrides are known to mediate a number of important chemical transformations including proton (H+), hydride (H-), and hydrogen-atom (H˙) transfer. Central to the tunability of such frameworks is judicious ligand design, which offers the flexibility to alter fundamental properties relevant to reactivity. Herein, we report the preparation of one such cobalt(III) hydride: [Cp*CoIII(P2BCy4)(H)]BPh4 (Cp* = C5Me5-, P2BCy4 = 1,2-bis(di(3-dicyclohexylborane)propylphosphino)ethane) that is encircled by a boron-based Lewis-acidic secondary coordination sphere. The structure of this species is supported by synchrotron-radiation crystallography, evidencing a terminal Co(III) hydride with four sp2-hybridized boranes that invite Lewis base coordination. To this end, electrochemical reactivity studies performed using [Cp*CoIII(P2BCy4)Cl]+ or an "all-akyl" model, [Cp*CoIII(dnppe)Cl]+ (dnppe = 1,2-bis(di-n-propylphosphino)ethane) with benzoic or 4-pyridylbenzoic acid show divergent responses for protonation of electrochemically-generated Co(I) to give a Co(III) hydride. For [Cp*CoIII(P2BCy4)Cl]+, this process is complex, not only involving protonation, but also engagement of the pendant borane moieties in Lewis acid/base interactions. For protonation by benzoic acid, for example, borane-benzoate contacts are substantiated by variable temperature NMR spectroscopic measurements and theoretical calculations, pointing to a cooperative Co-H/B-O bond forming process. These data are discussed in the context of designing new molecular catalysts for ligand-assisted hydrogen evolution reactivity.

4.
Dalton Trans ; 49(45): 16312-16318, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432301

RESUMO

Herein, we describe the preparation, characterization, and reactivity of two PtII bis-hydrocarbyl complexes containing the 1,2-bis(di(3-dicyclohexylboraneyl)propylphosphino)ethane (P2BCy4) ligand. These scaffolds are readily accessed from four-fold hydroboration of 1,2-bis(diallylphosphino)ethane PtII precursors. The electrophilcity of such frameworks is showcased by facile coordination of the strong Lewis base, 4-N,N-dimethylaminopyridine (DMAP). Thermolysis reactions of [Pt(P2BCy4)(R)2] (R = CH3 or Ph) show enhanced (and divergent) reactivity when compared to their "all-alkyl" diphosphine counterparts, implicating involvement of the pendant borane groups. This behaviour is attenuated by protection of these units with DMAP.

5.
Chemistry ; 26(49): 11180-11186, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32315484

RESUMO

Herein, we establish the preparation, characterization, and reactivity of a new diphosphine ligand, 1,2-bis(di(3-dicyclohexylboraneyl)propylphosphino)ethane (P2 BCy 4 ), a scaffold that contains four pendant boranes. An entryway into the coordination chemistry of P2 BCy 4 is established by using nickel, providing the octaboraneyl complex [Ni(P2 BCy 4 )2 ]-this species contains a boron-rich secondary coordination sphere that reacts readily with Lewis bases. In the case of 4,4'-bipyridine, an air-sensitive coordination polymer is obtained. Characterization of this material by solid-state NMR and EPR spectroscopy reveals the presence of a charge-transfer polymer, which forms as a function of intramolecular Ni→4,4'-bpy electron transfer (ET), providing an array of oxidized nickel sites and reduced 4,4'-bpy radical anion sites. Notably, the related intermolecular reaction between the model fragments [Ni(dnppe)2 ] (dnppe=1,2-bis(di-n-propylphosphino)ethane) and a bis(boraneyl)-protected 4,4'-bpy, provides no ET. Overall, the P2 BCy 4 fragment provides a unique opportunity for Lewis base activation, in one case allowing for the facile construction of monomers for incorporation into redox-active macromolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA