Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Heart Fail ; 14(7): e006898, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34247489

RESUMO

BACKGROUND: Peripartum cardiomyopathy (PPCM) is a life-threatening disease in women without previously known cardiovascular disease. It is characterized by a sudden onset of heart failure before or after delivery. Previous studies revealed that the generation of a 16-kDa PRL (prolactin) metabolite, the subsequent upregulation of miR-146a, and the downregulation of the target gene Erbb4 is a common driving factor of PPCM. METHODS: miRNA profiling was performed in plasma of PPCM patients (n=33) and postpartum-matched healthy CTRLs (controls; n=36). Elevated miRNAs in PPCM plasma, potentially targeting ERBB4 (erythroblastic leukemia viral oncogene homolog 4), were overexpressed in cardiomyocytes using lentiviral vectors. Next, cardiac function, cardiac morphology, and PPCM phenotype were investigated after recurrent pregnancies of HZ (heterozygous) cardiomyocyte-specific Erbb4 mice (Erbb4F/+ αMHC-Cre+, n=9) with their age-matched nonpregnant CTRLs (n=9-10). RESULTS: Here, we identify 9 additional highly conserved miRNAs (miR-199a-5p and miR-199a-3p, miR-145a-5p, miR-130a-3p, miR-135a-5p, miR-221-3p, miR-222-3p, miR-23a-3p, and miR19b-3p) that target tyrosine kinase receptor ERBB4 and are over 4-fold upregulated in plasma of PPCM patients at the time of diagnosis. We confirmed that miR-146a, miR-199a-5p, miR-221-3p, miR-222-3p, miR-23a-3p, miR-130a-5p, and miR-135-3p overexpression decreases ERBB4 expression in cardiomyocytes (-29% to -50%; P<0.05). In addition, we demonstrate that genetic cardiomyocyte-specific downregulation of Erbb4 during pregnancy suffices to induce a variant of PPCM in mice, characterized by left ventricular dilatation (postpartum second delivery: left ventricular internal diameter in diastole, +19±7% versus HZ-CTRL; P<0.05), increased atrial natriuretic peptide (ANP) levels (4-fold increase versus HZ-CTRL mice, P<0.001), decreased VEGF (vascular endothelial growth factor) and VE-cadherin levels (-33±17%, P=0.07; -27±20%, P<0.05 versus HZ-CTRL), and histologically enlarged cardiomyocytes (+20±21%, versus HZ-CTRL, P<0.05) but without signs of myocardial apoptosis and inflammation. CONCLUSIONS: ERBB4 is essential to protect the maternal heart from peripartum stress. Downregulation of ERBB4 in cardiomyocytes induced by multiple miRNAs in the peripartum period may be crucial in PPCM pathophysiology. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00998556.


Assuntos
Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca/genética , MicroRNAs/genética , Receptor ErbB-4/genética , Animais , Cardiomiopatias/genética , Doenças Cardiovasculares/genética , Feminino , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Período Periparto/metabolismo , Gravidez , Receptor ErbB-4/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 319(2): H443-H455, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618511

RESUMO

Neuregulin-1 (NRG1) is a paracrine growth factor, secreted by cardiac endothelial cells (ECs) in conditions of cardiac overload/injury. The current concept is that the cardiac effects of NRG1 are mediated by activation of erythroblastic leukemia viral oncogene homolog (ERBB)4/ERBB2 receptors on cardiomyocytes. However, recent studies have shown that paracrine effects of NRG1 on fibroblasts and macrophages are equally important. Here, we hypothesize that NRG1 autocrine signaling plays a role in cardiac remodeling. We generated EC-specific Erbb4 knockout mice to eliminate endothelial autocrine ERBB4 signaling without affecting paracrine NRG1/ERBB4 signaling in the heart. We first observed no basal cardiac phenotype in these mice up to 32 wk. We next studied these mice following transverse aortic constriction (TAC), exposure to angiotensin II (ANG II), or myocardial infarction in terms of cardiac performance, myocardial hypertrophy, myocardial fibrosis, and capillary density. In general, no major differences between EC-specific Erbb4 knockout mice and control littermates were observed. However, 8 wk following TAC both myocardial hypertrophy and fibrosis were attenuated by EC-specific Erbb4 deletion, albeit these responses were normalized after 20 wk. Similarly, 4 wk after ANG II treatment, myocardial fibrosis was less pronounced compared with control littermates. These observations were supported by RNA-sequencing experiments on cultured endothelial cells showing that NRG1 controls the expression of various hypertrophic and fibrotic pathways. Overall, this study shows a role of endothelial autocrine NRG1/ERBB4 signaling in the modulation of hypertrophic and fibrotic responses during early cardiac remodeling. This study contributes to understanding the spatiotemporal heterogeneity of myocardial autocrine and paracrine responses following cardiac injury.NEW & NOTEWORTHY The role of NRG1/ERBB signaling in endothelial cells is not completely understood. Our study contributes to the understanding of spatiotemporal heterogeneity of myocardial autocrine and paracrine responses following cardiac injury and shows a role of endothelial autocrine NRG1/ERBB4 signaling in the modulation of hypertrophic and fibrotic responses during early cardiac remodeling.


Assuntos
Comunicação Autócrina , Cardiomiopatias/metabolismo , Células Endoteliais/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica , Comunicação Parácrina , Receptor ErbB-4/deficiência , Receptor ErbB-4/genética , Transdução de Sinais
3.
Cell Oncol (Dordr) ; 43(3): 335-352, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32219702

RESUMO

BACKGROUND: The epidermal growth factor receptor family consists of four members, ErbB1 (epidermal growth factor receptor-1), ErbB2, ErbB3, and ErbB4, which all have been found to play important roles in tumor development. ErbB4 appears to be unique among these receptors, because it is the only member with growth inhibiting properties. ErbB4 plays well-defined roles in normal tissue development, in particular the heart, the nervous system, and the mammary gland system. In recent years, information on the role of ErbB4 in a number of tumors has emerged and its general direction points towards a tumor suppressor role for ErbB4. However, there are some controversies and conflicting data, warranting a review on this topic. CONCLUSIONS: Here, we discuss the role of ErbB4 in normal physiology and in breast, lung, colorectal, gastric, pancreatic, prostate, bladder, and brain cancers, as well as in hepatocellular carcinoma, cholangiocarcinoma, and melanoma. Understanding the role of ErbB4 in cancer is not only important for the treatment of tumors, but also for the treatment of other disorders in which ErbB4 plays a major role, e.g. cardiovascular disease.


Assuntos
Neoplasias/metabolismo , Receptor ErbB-4/metabolismo , Desenvolvimento Embrionário , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia , Receptor ErbB-4/genética , Transdução de Sinais
5.
Circ Heart Fail ; 12(10): e006288, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31607147

RESUMO

Heart failure is a complex syndrome whose phenotypic presentation and disease progression depends on a complex network of adaptive and maladaptive responses. One of these responses is the endothelial release of NRG (neuregulin)-1-a paracrine growth factor activating ErbB2 (erythroblastic leukemia viral oncogene homolog B2), ErbB3, and ErbB4 receptor tyrosine kinases on various targets cells. NRG-1 features a multitasking profile tuning regenerative, inflammatory, fibrotic, and metabolic processes. Here, we review the activities of NRG-1 on different cell types and organs and their implication for heart failure progression and its comorbidities. Although, in general, effects of NRG-1 in heart failure are compensatory and beneficial, translation into therapies remains unaccomplished both because of the complexity of the underlying pathways and because of the challenges in the development of therapeutics (proteins, peptides, small molecules, and RNA-based therapies) for tyrosine kinase receptors. Here, we give an overview of the complexity to be faced and how it may be tackled.


Assuntos
Células Endoteliais/metabolismo , Insuficiência Cardíaca/metabolismo , Neuregulina-1/metabolismo , Animais , Fármacos Cardiovasculares/uso terapêutico , Doença Crônica , Células Endoteliais/efeitos dos fármacos , Receptores ErbB/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Ligantes , Terapia de Alvo Molecular , Neuregulina-1/uso terapêutico , Transdução de Sinais
6.
Physiol Genomics ; 51(6): 186-196, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978160

RESUMO

Cardiac microvascular endothelial cells (CMVECs) are the most numerous cells in the myocardium and orchestrate cardiogenesis during development, regulate adult cardiac function, and modulate pathophysiology of heart failure. It has been shown that the transcriptome of CMVECs differs from other endothelial cell types, but transcriptomic changes in cardiac endothelial cells during cardiac maturation and cardiac remodeling have not been studied. CMVECs were isolated from rat hearts based on CD31 expression and were immediately processed for RNA sequencing. We compared gene expression levels from primary CMVECs of neonatal hearts, normal adult hearts, and infarcted hearts. Between neonatal and adult CMVECs, 6,838 genes were differentially expressed, indicating that CMVECs undergo a substantial transformation during postnatal cardiac growth. A large fraction of genes upregulated in neonatal CMVECs are part of mitosis pathways, whereas a large fraction of genes upregulated in adult CMVECs are part of cellular response, secretory, signaling, and cell adhesion pathways. Between CMVECs of normal adult hearts and infarcted hearts, 159 genes were differentially expressed. We found a limited degree of overlap (55 genes) between the differentially expressed genes in neonatal and infarcted-hearts. Of 46 significantly upregulated genes in the infarcted heart, 46% were also upregulated in neonatal hearts relative to sham. Of 113 significantly downregulated genes in the infarcted-hearts, 30% were also downregulated in neonatal hearts relative to sham. These data demonstrate that CMVECs undergo dramatic changes from neonatal to adult and more subtle changes between normal state and cardiac remodeling.


Assuntos
Células Endoteliais/metabolismo , Coração/fisiologia , Transcriptoma/genética , Remodelação Ventricular/genética , Animais , Adesão Celular/genética , Células Cultivadas , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica/métodos , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA/métodos , Transdução de Sinais/genética , Regulação para Cima/genética
7.
Front Physiol ; 9: 582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867592

RESUMO

Induction of hypertension by angiotensin II (AngII) is a widely used experimental stimulus to study vascular aging in mice. It is associated with large artery stiffness, a hallmark of arterial aging and a root cause of increased cardiovascular risk. We reported earlier that long term (4 week) AngII treatment in mice altered the active, contractile properties of the arteries in a vascular bed-specific manner and that, in healthy mice aorta, active contractile properties of the aortic wall determine isobaric aortic stiffness. Given the huge physiological relevance of large artery stiffening, we aimed to characterize the early (1 week) changes in the active properties of the aorta of AngII-treated mice. We were not able to detect a significant effect of AngII treatment on anesthetized blood pressure or abdominal aorta pulse wave velocity. Ex vivo biomechanical and functional studies of the aorta revealed increased arterial stiffness and altered vascular smooth muscle cell (VSMC) and endothelial cell reactivity. Interestingly, the AngII-associated changes in the aorta could be largely attributed to alterations in basal VSMC tone and basal nitric oxide efficacy, indicating that, besides structural remodeling of the arterial wall, dysfunctional active components of the aorta play a crucial role in the pathophysiological mechanisms by which AngII treatment induces arterial stiffness.

8.
Am J Physiol Heart Circ Physiol ; 313(5): H934-H945, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822966

RESUMO

The neuregulin-1 (NRG-1)/receptor tyrosine-protein kinase erbB (ErbB) system is an endothelium-controlled paracrine system modulating cardiac performance and adaptation. Recent studies have indicated that NRG-1 has antifibrotic effects in the left ventricle, which were explained by direct actions on cardiac fibroblasts. However, the NRG-1/ErbB system also regulates the function of macrophages. In this study, we hypothesized that the antifibrotic effect of NRG-1 in the heart is at least partially mediated through inhibitory effects on macrophages. We also hypothesized that the antifibrotic effect of NRG-1 may be active in other organs, such as the skin and lung. First, in a mouse model of angiotensin II (ANG II)-induced myocardial hypertrophy and fibrosis, NRG-1 treatment (20 µg·kg-1·day-1 ip) significantly attenuated myocardial hypertrophy and fibrosis and improved passive ventricular stiffness (4 wk). Interestingly, 1 wk after exposure to ANG II, NRG-1 already attenuated myocardial macrophage infiltration and cytokine expression. Furthermore, mice with myeloid-specific deletion of the ErbB4 gene (ErbB4F/FLysM-Cre+/-) showed an intensified myocardial fibrotic response to ANG II. Consistently, NRG-1 activated the ErbB4 receptor in isolated macrophages, inhibited phosphatidylinositide 3-kinase/Akt and STAT3 signaling pathways, and reduced the release of inflammatory cytokines. Further experiments showed that the antifibrotic and anti-inflammatory effects of NRG-1 were reproducible in mouse models of bleomycin-induced dermal and pulmonary fibrosis. Overall, this study demonstrates that the antifibrotic effect of NRG-1 in the heart is linked to anti-inflammatory activity NRG-1/ErbB4 signaling in macrophages. Second, this study shows that NRG-1 has antifibrotic and anti-inflammatory effects in organs other than the heart, such as the skin and lung.NEW & NOTEWORTHY Our study contributes to the understanding of the antifibrotic effect of neuregulin-1 during myocardial remodeling. Here, we show that the antifibrotic effect of neuregulin-1 is at least partially mediated through anti-inflammatory activity, linked to receptor tyrosine-protein kinase erbB-4 activation in macrophages. Furthermore, we show that this effect is also present outside the heart.


Assuntos
Macrófagos/metabolismo , Miocárdio/patologia , Neuregulina-1/metabolismo , Fibrose Pulmonar/patologia , Receptor ErbB-4/metabolismo , Transdução de Sinais , Pele/patologia , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Ecocardiografia , Fibrose , Coração/diagnóstico por imagem , Hemodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Miocardite/patologia , Miócitos Cardíacos/patologia , Fibrose Pulmonar/diagnóstico por imagem , Pele/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA