Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Toxicol ; 6: 1339104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654939

RESUMO

As a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).

2.
Pflugers Arch ; 475(11): 1265-1281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37656229

RESUMO

Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that ß-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.

3.
Sci Rep ; 12(1): 13988, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977967

RESUMO

Intestinal epithelial cells and the intestinal microbiota are in a mutualistic relationship that is dependent on communication. This communication is multifaceted, but one aspect is communication through compounds produced by the microbiota such as the short-chain fatty acids (SCFAs) butyrate, propionate and acetate. Studying the effects of SCFAs and especially butyrate in intestinal epithelial cell lines like Caco-2 cells has been proven problematic. In contrast to the in vivo intestinal epithelium, Caco-2 cells do not use butyrate as an energy source, leading to a build-up of butyrate. Therefore, we used human induced pluripotent stem cell derived intestinal epithelial cells, grown as a cell layer, to study the effects of butyrate, propionate and acetate on whole genome gene expression in the cells. For this, cells were exposed to concentrations of 1 and 10 mM of the individual short-chain fatty acids for 24 h. Unique gene expression profiles were observed for each of the SCFAs in a concentration-dependent manner. Evaluation on both an individual gene level and pathway level showed that butyrate induced the biggest effects followed by propionate and then acetate. Several known effects of SCFAs on intestinal cells were confirmed, such as effects on metabolism and immune responses. The changes in metabolic pathways in the intestinal epithelial cell layers in this study demonstrate that there is a switch in energy homeostasis, this is likely associated with the use of SCFAs as an energy source by the induced pluripotent stem cell derived intestinal epithelial cells similar to in vivo intestinal tissues where butyrate is an important energy source.


Assuntos
Butiratos , Células-Tronco Pluripotentes Induzidas , Acetatos/metabolismo , Acetatos/farmacologia , Butiratos/metabolismo , Butiratos/farmacologia , Células CACO-2 , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mucosa Intestinal/metabolismo , Propionatos/metabolismo , Propionatos/farmacologia
4.
Sci Rep ; 11(1): 10327, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990636

RESUMO

Flow conditions have been shown to be important in improving longevity and functionality of primary hepatocytes, but the impact of flow on HepaRG cells is largely unknown. We studied the expression of genes encoding CYP enzymes and transporter proteins and CYP1 and CYP3A4 activity during 8 weeks of culture in HepaRG cells cultured under static conditions (conventional 24-/96-well plate culture with common bicarbonate/CO2 buffering) and under flow conditions in an organ-on-chip (OOC) device. Since the OOC-device is a closed system, bicarbonate/CO2 buffering was not possible, requiring application of another buffering agent, such as HEPES. In order to disentangle the effects of HEPES from the effects of flow, we also applied HEPES-supplemented medium in static cultures and studied gene expression and CYP activity. We found that cells cultured under flow conditions in the OOC-device, as well as cells cultured under static conditions with HEPES-supplemented medium, showed more stable gene expression levels. Furthermore, only cells cultured in the OOC-device showed relatively high baseline CYP1 activity, and their gene expression levels of selected CYPs and transporters were most similar to gene expression levels in human primary hepatocytes. However, there was a decrease in baseline CYP3A4 activity under flow conditions compared to HepaRG cells cultured under static conditions. Altogether, the present study shows that HepaRG cells cultured in the OOC-device were more stable than in static cultures, being a promising in vitro model to study hepatoxicity of chemicals upon chronic exposure.


Assuntos
Técnicas de Cultura de Células/métodos , Hepatócitos/efeitos dos fármacos , Testes de Toxicidade Crônica/métodos , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Família 1 do Citocromo P450/genética , Família 1 do Citocromo P450/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação da Expressão Gênica , Hepatócitos/enzimologia , Humanos
6.
Nanotoxicology ; 15(9): 1233-1252, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35077654

RESUMO

Due to the widespread application of food-relevant inorganic nanomaterials, the gastrointestinal tract is potentially exposed to these materials. Gut-on-chip in vitro systems are proposed for the investigation of compound toxicity as they better recapitulate the in vivo human intestinal environment than static models, due to the added shear stresses associated with the flow of the medium. We aimed to compare cellular responses of intestinal epithelial Caco-2 cells at the gene expression level upon TiO2 (E171) and ZnO (NM110) nanomaterial exposure when cultured under dynamic and conventionally applied static conditions. Whole-genome transcriptome analyses upon exposure of the cells to TiO2 and ZnO nanomaterials revealed differentially expressed genes and related biological processes that were culture condition specific. The total number of differentially expressed genes (p < 0.01) and affected pathways (p < 0.05 and FDR < 0.25) after nanomaterial exposure was higher under dynamic culture conditions than under static conditions for both nanomaterials. The observed increase in nanomaterial-induced responses in the gut-on-chip model indicates that shear stress might be a major factor in cell susceptibility. This is the first report on the application of a gut-on-chip system in which gene expression responses upon TiO2 and ZnO nanomaterial exposure are evaluated and compared to a static system. It extends current knowledge on nanomaterial toxicity assessment and the influence of a dynamic environment on cellular responses. Application of the gut-on-chip system resulted in higher sensitivity of the cells and might thus be an attractive system for use in the toxicological hazard characterization of nanomaterials.


Assuntos
Nanoestruturas , Óxido de Zinco , Células CACO-2 , Humanos , Nanoestruturas/toxicidade , Titânio/toxicidade , Transcriptoma , Óxido de Zinco/toxicidade
7.
Arch Toxicol ; 95(3): 907-922, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33263786

RESUMO

Human intestinal organoids (HIOs) are a promising in vitro model consisting of different intestinal cell types with a 3D microarchitecture resembling native tissue. In the current study, we aimed to assess the expression of the most common intestinal CYP enzymes in a human induced pluripotent stem cell (hiPSC)-derived HIO model, and the suitability of that model to study chemical-induced changes in CYP expression and activity. We compared this model with the commonly used human colonic adenocarcinoma cell line Caco-2 and with a human primary intestinal epithelial cell (IEC)-based model, closely resembling in vivo tissue. We optimized an existing protocol to differentiate hiPSCs into HIOs and demonstrated that obtained HIOs contain a polarized epithelium with tight junctions consisting of enterocytes, goblet cells, enteroendocrine cells and Paneth cells. We extensively characterized the gene expression of CYPs and activity of CYP3A4/5, indicating relatively high gene expression levels of the most important intestinal CYP enzymes in HIOs compared to the other models. Furthermore, we showed that CYP1A1 and CYP1B1 were induced by ß-naphtoflavone in all three models, whereas CYP3A4 was induced by phenobarbital and rifampicin in HIOs, in the IEC-based model (although not statistically significant), but not in Caco-2 cells. Interestingly, CYP2B6 expression was not induced in any of the models by the well-known liver CYP2B6 inducer phenobarbital. In conclusion, our study indicates that hiPSC-based HIOs are a useful in vitro intestinal model to study biotransformation of chemicals in the intestine.


Assuntos
Indutores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Adulto , Células CACO-2 , Linhagem Celular , Células Cultivadas , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/enzimologia , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo
8.
Genes (Basel) ; 10(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083422

RESUMO

Obesity is associated with white adipose tissue (WAT) hypoxia and inflammation. We aimed to test whether mild environmental oxygen restriction (OxR, 13% O2), imposing tissue hypoxia, triggers WAT inflammation in obese mice. Thirteen weeks diet-induced obese male adult C57BL/6JOlaHsd mice housed at thermoneutrality were exposed for five days to OxR versus normoxia. WAT and blood were isolated and used for analysis of metabolites and adipokines, WAT histology and macrophage staining, and WAT transcriptomics. OxR increased circulating levels of haemoglobin and haematocrit as well as hypoxia responsive transcripts in WAT and decreased blood glucose, indicating systemic and tissue hypoxia. WAT aconitase activity was inhibited. Macrophage infiltration as marker for WAT inflammation tended to be decreased, which was supported by down regulation of inflammatory genes S100a8, Ccl8, Clec9a, Saa3, Mgst2, and Saa1. Other down regulated processes include cytoskeleton remodelling and metabolism, while response to hypoxia appeared most prominently up regulated. The adipokines coiled-coil domain containing 3 (CCDC3) and adiponectin, as well as the putative WAT hormone cholecystokinin (CCK), were reduced by OxR on transcript (Cck, Ccdc3) and/or serum protein level (adiponectin, CCDC3). Conclusively, our data demonstrate that also in obese mice OxR does not trigger WAT inflammation. However, OxR does evoke a metabolic response in WAT, with CCDC3 and adiponectin as potential markers for systemic or WAT hypoxia.


Assuntos
Tecido Adiposo Branco/metabolismo , Hipóxia/genética , Obesidade/genética , Adipocinas/genética , Adipocinas/metabolismo , Tecido Adiposo Branco/patologia , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica , Hipóxia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Temperatura
9.
PLoS One ; 10(6): e0128515, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098756

RESUMO

Poly-unsaturated fatty acids (PUFAs) are considered to be healthier than saturated fatty acids (SFAs), but others postulate that especially the ratio of omega-6 to omega-3 PUFAs (n6/n3 ratio) determines health. Health can be determined with biomarkers, but functional health status is likely better reflected by challenge tests that assess metabolic flexibility. The aim of this study was to determine the effect of high-fat diets with different fatty acid compositions, but similar n6/n3 ratio, on metabolic flexibility. Therefore, adult male mice received isocaloric high-fat diets with either predominantly PUFAs (HFpu diet) or predominantly SFAs (HFs diet) but similar n6/n3 ratio for six months, during and after which several biomarkers for health were measured. Metabolic flexibility was assessed by the response to an oral glucose tolerance test, a fasting and re-feeding test and an oxygen restriction test (OxR; normobaric hypoxia). The latter two are non-invasive, indirect calorimetry-based tests that measure the adaptive capacity of the body as a whole. We found that the HFs diet, compared to the HFpu diet, increased mean adipocyte size, liver damage, and ectopic lipid storage in liver and muscle; although, we did not find differences in body weight, total adiposity, adipose tissue health, serum adipokines, whole body energy balance, or circadian rhythm between HFs and HFpu mice. HFs mice were, furthermore, less flexible in their response to both fasting- re-feeding and OxR, while glucose tolerance was indistinguishable. To conclude, the HFs versus the HFpu diet increased ectopic fat storage, liver damage, and mean adipocyte size and reduced metabolic flexibility in male mice. This study underscores the physiological relevance of indirect calorimetry-based challenge tests.


Assuntos
Adipócitos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Animais , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Teste de Tolerância a Glucose , Hipóxia , Metabolismo dos Lipídeos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/fisiologia
10.
J Gerontol A Biol Sci Med Sci ; 70(3): 282-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24615069

RESUMO

Indirect calorimetry (InCa) can potentially be used to noninvasively assess metabolic and age-related flexibility. To assess the use of InCa for this purpose, we tested the sensitivity and response stability over time of three InCa-based treatments in old versus adult mice. Diurnal patterns of respiratory exchange ratio were followed for 24 hours under standard conditions (Treatment 1), but the results were not stable between test periods. As a challenge, fasted mice received glucose to test switch-effectiveness from fat to glucose oxidation (Treatment 2). No differences between groups were observed, although old mice showed higher adiposity and lower white adipose tissue (WAT) mitochondrial density, indicative of age-impaired metabolic health. Lastly, adaptation to a challenge of oxygen restriction (OxR, 14.5% O2) was assessed as a novel approach (Treatment 3). This treatment stably detected significant differences: old mice did not maintain reduced oxygen consumption under OxR during both test periods, whereas adult mice did. Further biochemical and gene expression analyses showed that OxR affected glucose and lactate homeostasis in liver and WAT of adult mice, supporting the observed differences in oxygen consumption. In conclusion, InCa analysis of the response to OxR in mice is a sensitive and reproducible treatment to noninvasively measure age-impaired metabolic health.


Assuntos
Calorimetria Indireta , Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Adiposidade/fisiologia , Fatores Etários , Animais , Ritmo Circadiano/fisiologia , Jejum/fisiologia , Feminino , Glucose/metabolismo , Hipóxia/etiologia , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Pflugers Arch ; 467(6): 1179-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24974902

RESUMO

Challenge tests stress homeostasis and may reveal deviations in health that remain masked under unchallenged conditions. Ideally, challenge tests are non-invasive and applicable in an early phase of an animal experiment. Oxygen restriction (OxR; based on ambient, mild normobaric hypoxia) is a non-invasive challenge test that measures the flexibility to adapt metabolism. Metabolic inflexibility is one of the hallmarks of the metabolic syndrome. To test whether OxR can be used to reveal early diet-induced health effects, we exposed mice to a low-fat (LF) or high-fat (HF) diet for only 5 days. The response to OxR was assessed by calorimetric measurements, followed by analysis of gene expression in liver and epididymal white adipose tissue (eWAT) and serum markers for e.g. protein glycation and oxidation. Although HF feeding increased body weight, HF and LF mice did not differ in indirect calorimetric values under normoxic conditions and in a fasting state. Exposure to OxR; however, increased oxygen consumption and lipid oxidation in HF mice versus LF mice. Furthermore, OxR induced gluconeogenesis and an antioxidant response in the liver of HF mice, whereas it induced de novo lipogenesis and an antioxidant response in eWAT of LF mice, indicating that HF and LF mice differed in their adaptation to OxR. OxR also increased serum markers of protein glycation and oxidation in HF mice, whereas these changes were absent in LF mice. Cumulatively, OxR is a promising new method to test food products on potential beneficial effects for human health.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Hipóxia/metabolismo , Metabolismo dos Lipídeos , Oxigênio/metabolismo , Tecido Adiposo/metabolismo , Animais , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Consumo de Oxigênio , Produtos Finais de Degradação Proteica/metabolismo
12.
J Mol Endocrinol ; 47(1): 81-97, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21830320

RESUMO

High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on an ad libitum basis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.


Assuntos
Restrição Calórica , Gorduras na Dieta/administração & dosagem , Saúde , Metabolismo dos Lipídeos/genética , Adiponectina/sangue , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiopatologia , Animais , Metabolismo dos Carboidratos/genética , Colesterol/sangue , DNA Mitocondrial/metabolismo , Epididimo/metabolismo , Epididimo/fisiopatologia , Perfilação da Expressão Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Leptina/sangue , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Obesidade/sangue , Obesidade/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , Transcrição Gênica , Aumento de Peso , Redução de Peso
13.
J Mol Endocrinol ; 47(1): 81-97, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21610007

RESUMO

High energy intake and, specifically, high dietary fat intake challenge the mammalian metabolism and correlate with many metabolic disorders such as obesity and diabetes. However, dietary restriction (DR) is known to prevent the development of metabolic disorders. The current western diets are highly enriched in fat, and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. In this research, we report that HF-DR improves metabolic health of mice compared with mice receiving the same diet on an ad libitum basis (HF-AL). Already after five weeks of restriction, the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, whereas their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analyzed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total, 8643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by quantitative real-time reverse transcription-PCR and substantiated by increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA