Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain ; 147(2): 637-648, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236720

RESUMO

Aggregation prone molecules, such as tau, form both historically well characterized fibrillar deposits (neurofibrillary tangles) and recently identified phosphate-buffered saline (PBS) extract species called proteopathic seeds. Both can cause normal endogenous tau to undergo templated misfolding. The relationship of these seeds to the fibrils that define tau-related diseases is unknown. We characterized the aqueous extractable and sarkosyl insoluble fibrillar tau species derived from human Alzheimer brain using mass spectrometry and in vitro bioassays. Post-translational modifications (PTMs) including phosphorylation, acetylation and ubiquitination are identified in both preparations. PBS extract seed competent tau can be distinguished from sarkosyl insoluble tau by the presence of overlapping, but less abundant, PTMs and an absence of some PTMs unique to the latter. The presence of ubiquitin and other PTMs on the PBS-extracted tau species correlates with the amount of tau in the seed competent size exclusion fractions, with the bioactivity and with the aggressiveness of clinical disease. These results demonstrate that the PTMs present on bioactive, seed competent PBS extract tau species are closely related to, but distinct from, the PTMs of mature paired helical filaments, consistent with the idea that they are a forme fruste of tau species that ultimately form fibrils.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Humanos , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Processamento de Proteína Pós-Traducional , Fosforilação
2.
iScience ; 26(2): 105983, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36756365

RESUMO

The speed and scope of cognitive deterioration in Alzheimer's disease is highly associated with the advancement of tau neurofibrillary lesions across brain networks. We tested whether the rate of tau propagation is a heritable disease trait in a large, well-characterized cohort of genetically divergent mouse strains. Using an AAV-based model system, P301L-mutant human tau (hTau) was introduced into the entorhinal cortex of mice derived from 18 distinct lines. The extent of tau propagation was measured by distinguishing hTau-producing cells from neurons that were recipients of tau transfer. Heritability calculation revealed that 43% of the variability in tau spread was due to genetic variants segregating across background strains. Strain differences in glial markers were also observed, but did not correlate with tau propagation. Identifying unique genetic variants that influence the progression of pathological tau may uncover novel molecular targets to prevent or slow the pace of tau spread and cognitive decline.

3.
Eur Radiol ; 33(5): 3386-3395, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36600126

RESUMO

OBJECTIVES: New PET data-processing tools allow for automatic lesion selection and segmentation by a convolution neural network using artificial intelligence (AI) to obtain total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) routinely at the clinical workstation. Our objective was to evaluate an AI implemented in a new version of commercial software to verify reproducibility of results and time savings in a daily workflow. METHODS: Using the software to obtain TMTV and TLG, two nuclear physicians applied five methods to retrospectively analyze data for 51 patients. Methods 1 and 2 were fully automated with exclusion of lesions ≤ 0.5 mL and ≤ 0.1 mL, respectively. Methods 3 and 4 were fully automated with physician review. Method 5 was semi-automated and used as reference. Time and number of clicks to complete the measurement were recorded for each method. Inter-instrument and inter-observer variation was assessed by the intra-class coefficient (ICC) and Bland-Altman plots. RESULTS: Between methods 3 and 5, for the main user, the ICC was 0.99 for TMTV and 1.0 for TLG. Between the two users applying method 3, ICC was 0.97 for TMTV and 0.99 for TLG. Mean processing time (± standard deviation) was 20 s ± 9.0 for method 1, 178 s ± 125.7 for method 3, and 326 s ± 188.6 for method 5 (p < 0.05). CONCLUSION: AI-enabled lesion detection software offers an automated, fast, reliable, and consistently performing tool for obtaining TMTV and TLG in a daily workflow. KEY POINTS: • Our study shows that artificial intelligence lesion detection software is an automated, fast, reliable, and consistently performing tool for obtaining total metabolic tumor volume and total lesion glycolysis in a daily workflow.


Assuntos
Fluordesoxiglucose F18 , Linfoma Difuso de Grandes Células B , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carga Tumoral , Inteligência Artificial , Estudos Retrospectivos , Reprodutibilidade dos Testes , Prognóstico , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Redes Neurais de Computação , Glicólise
4.
Brain Commun ; 4(2): fcac048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350555

RESUMO

Progressive cognitive decline in Alzheimer's disease correlates closely with the spread of tau protein aggregation across neural networks of the cortical mantle. We tested the hypothesis that heritable factors may influence the rate of propagation of tau pathology across brain regions in a model system, taking advantage of well-defined genetically diverse background strains in mice. We virally expressed human tau locally in the hippocampus and the entorhinal cortex neurons and monitored the cell-to-cell tau protein spread by immunolabelling. Interestingly, some strains showed more tau spreading than others while tau misfolding accumulated at the same rate in all tested mouse strains. Genetic factors may contribute to tau pathology progression across brain networks, which could help refine mechanisms underlying tau cell-to-cell transfer and accumulation, and potentially provide targets for understanding patient-to-patient variability in the rate of disease progression in Alzheimer's disease.

5.
Mol Neurobiol ; 59(1): 683-702, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34757590

RESUMO

Understanding the mechanisms underlying amyotrophic lateral sclerosis (ALS) is crucial for the development of new therapies. Previous studies have demonstrated that mitochondrial dysfunction is a key pathogenetic event in ALS. Interestingly, studies in Alzheimer's disease (AD) post-mortem brain and animal models link alterations in mitochondrial function to interactions between hyperphosphorylated tau and dynamin-related protein 1 (DRP1), the GTPase involved in mitochondrial fission. Recent evidence suggest that tau may be involved in ALS pathogenesis, therefore, we sought to determine whether hyperphosphorylated tau may lead to mitochondrial fragmentation and dysfunction in ALS and whether reducing tau may provide a novel therapeutic approach. Our findings demonstrated that pTau-S396 is mis-localized to synapses in post-mortem motor cortex (mCTX) across ALS subtypes. Additionally, the treatment with ALS synaptoneurosomes (SNs), enriched in pTau-S396, increased oxidative stress, induced mitochondrial fragmentation, and altered mitochondrial connectivity without affecting cell survival in vitro. Furthermore, pTau-S396 interacted with DRP1, and similar to pTau-S396, DRP1 accumulated in SNs across ALS subtypes, suggesting increases in mitochondrial fragmentation in ALS. As previously reported, electron microscopy revealed a significant decrease in mitochondria density and length in ALS mCTX. Lastly, reducing tau levels with QC-01-175, a selective tau degrader, prevented ALS SNs-induced mitochondrial fragmentation and oxidative stress in vitro. Collectively, our findings suggest that increases in pTau-S396 may lead to mitochondrial fragmentation and oxidative stress in ALS and decreasing tau may provide a novel strategy to mitigate mitochondrial dysfunction in ALS. pTau-S396 mis-localizes to synapses in ALS. ALS synaptoneurosomes (SNs), enriched in pTau-S396, increase oxidative stress and induce mitochondrial fragmentation in vitro. pTau-S396 interacts with the pro-fission GTPase DRP1 in ALS. Reducing tau with a selective degrader, QC-01-175, mitigates ALS SNs-induced mitochondrial fragmentation and increases in oxidative stress in vitro.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Sinapses/metabolismo
6.
Brain Pathol ; 32(2): e13035, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779076

RESUMO

Although the molecular mechanisms underlying amyotrophic lateral sclerosis (ALS) are not yet fully understood, several studies report alterations in tau phosphorylation in both sporadic and familial ALS. Recently, we have demonstrated that phosphorylated tau at S396 (pTau-S396) is mislocalized to synapses in ALS motor cortex (mCTX) and contributes to mitochondrial dysfunction. Here, we demonstrate that while there was no overall increase in total tau, pTau-S396, and pTau-S404 in ALS post-mortem mCTX, total tau and pTau-S396 were increased in C9ORF72-ALS. Additionally, there was a significant decrease in pTau-T181 in ALS mCTX compared controls. Furthermore, we leveraged the ALS Knowledge Portal and Project MinE data sets and identified ALS-specific genetic variants across MAPT, the gene encoding tau. Lastly, assessment of cerebrospinal fluid (CSF) samples revealed a significant increase in total tau levels in bulbar-onset ALS together with a decrease in CSF pTau-T181:tau ratio in all ALS samples, as reported previously. While increases in CSF tau levels correlated with a faster disease progression as measured by the revised ALS functional rating scale (ALSFRS-R), decreases in CSF pTau-T181:tau ratio correlated with a slower disease progression, suggesting that CSF total tau and pTau-T181 ratio may serve as biomarkers of disease in ALS. Our findings highlight the potential role of pTau-T181 in ALS, as decreases in CSF pTau-T181:tau ratio may reflect the significant decrease in pTau-T181 in post-mortem mCTX. Taken together, these results indicate that tau phosphorylation is altered in ALS post-mortem mCTX as well as in CSF and, importantly, the newly described pathogenic or likely pathogenic variants identified in MAPT in this study are adjacent to T181 and S396 phosphorylation sites further highlighting the potential role of these tau functional domains in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Esclerose Lateral Amiotrófica/genética , Biomarcadores/líquido cefalorraquidiano , Progressão da Doença , Humanos , Córtex Motor/metabolismo , Fosforilação , Proteínas tau/metabolismo
7.
J Neuropathol Exp Neurol ; 80(10): 912-921, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34498073

RESUMO

The protein tau, when misfolded in neurodegenerative diseases, has several prion-like properties including being able to spread by cell-to-cell transfer, induce templated seeding, and exist in distinct conformational strains. These properties of transmission may present health hazards when lesion-containing biospecimens are used in research and neuropathology laboratories. We evaluated the impact standard sterilization and cleaning methods have on the capacity of tau seeds to induce aggregation. We employed a previously developed, highly sensitive FRET-based biosensor assay to assess remnant tau seeding after exposure to these procedures. For tau species derived from human Alzheimer disease tissue (brain homogenate and sarkosyl-insoluble fibrils), both autoclaving and incubation in 90.6% formic acid were sufficient to reduce tau bioactivity. By contrast, boiling was not always effective in completely blocking bioactivity in the seeding assay. Notably, only formic acid incubation was able to produce a similar reduction in tissue from a P301L mutant tau mouse model of tauopathy. Our study highlights nuances in methods for inactivation of tau seeding which may support adapted tissue processing procedures, especially in research settings. These findings also highlight the importance of universal precautions when handling human neuropathological and research laboratory materials.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Esterilização/métodos , Proteínas tau/isolamento & purificação , Animais , Encéfalo/efeitos dos fármacos , Cromatografia em Gel/métodos , Formiatos/farmacologia , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/antagonistas & inibidores
8.
Brain Commun ; 3(2): fcab096, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222869

RESUMO

The accumulation of tau aggregates throughout the human brain is the hallmark of a number of neurodegenerative conditions classified as tauopathies. Increasing evidence shows that tau aggregation occurs in a 'prion-like' manner, in which a small amount of misfolded tau protein can induce other, naïve tau proteins to aggregate. Tau aggregates have been found to differ structurally among different tauopathies. Recently, however, we have suggested that tau oligomeric species may differ biochemically among individual patients with sporadic Alzheimer disease, and have also showed that the bioactivity of the tau species, measured using a cell-based bioassay, also varied among individuals. Here, we adopted a live-cell imaging approach to the standard cell-based bioassay to explore further whether the kinetics of aggregation also differentiated these patients. We found that aggregation can be observed to follow a consistent pattern in all cases, with a lag phase, a growth phase and a plateau phase, which each provide quantitative parameters by which we characterize the aggregation kinetics. The length of the lag phase and magnitude of the plateau phase are both dependent upon the concentration of seeding-competent tau, the relative enrichment of which differs among patients. The slope of the growth phase correlates with morphological differences in the tau aggregates, which may be reflective of underlying structural differences. This kinetic assay confirms and refines the concept of heterogeneity in the characteristics of tau proteopathic seeds among individuals with Alzheimer's disease and is a method by which future studies may characterize longitudinal changes in tau aggregation and the cellular processes which may influence these changes.

9.
J Biol Chem ; 296: 100715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930462

RESUMO

In Alzheimer's disease (AD), pathological forms of tau are transferred from cell to cell and "seed" aggregation of cytoplasmic tau. Phosphorylation of tau plays a key role in neurodegenerative tauopathies. In addition, apolipoprotein E (apoE), a major component of lipoproteins in the brain, is a genetic risk determinant for AD. The identification of the apoE receptor, low-density lipoprotein receptor-related protein 1 (LRP1), as an endocytic receptor for tau raises several questions about the role of LRP1 in tauopathies: is internalized tau, like other LRP1 ligands, delivered to lysosomes for degradation, and does LRP1 internalize pathological tau leading to cytosolic seeding? We found that LRP1 rapidly internalizes 125I-labeled tau, which is then efficiently degraded in lysosomal compartments. Surface plasmon resonance experiments confirm high affinity binding of tau and the tau microtubule-binding domain to LRP1. Interestingly, phosphorylated forms of recombinant tau bind weakly to LRP1 and are less efficiently internalized by LRP1. LRP1-mediated uptake of tau is inhibited by apoE, with the apoE4 isoform being the most potent inhibitor, likely because of its higher affinity for LRP1. Employing post-translationally-modified tau derived from brain lysates of human AD brain tissue, we found that LRP1-expressing cells, but not LRP1-deficient cells, promote cytosolic tau seeding in a process enhanced by apoE. These studies identify LRP1 as an endocytic receptor that binds and processes monomeric forms of tau leading to its degradation and promotes seeding by pathological forms of tau. The balance of these processes may be fundamental to the spread of neuropathology across the brain in AD.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteólise , Proteínas tau/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Humanos , Transporte Proteico
10.
J Neurosci ; 41(19): 4335-4348, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33893219

RESUMO

Tau aggregation within neurons is a critical feature of Alzheimer's disease (AD) and related tauopathies. It is believed that soluble pathologic tau species seed the formation of tau aggregates in a prion-like manner and propagate through connected neurons during the progression of disease. Both soluble and aggregated forms of tau are thought to have neurotoxic properties. In addition, different strains of misfolded tau may cause differential neurotoxicity. In this work, we present an accelerated human neuronal model of tau-induced neurotoxicity that incorporates both soluble tau species and tau aggregation. Using patient-derived induced pluripotent stem cell (iPSC) neurons expressing a tau aggregation biosensor, we develop a cell culture system that allows continuous assessment of both induced tau aggregation and neuronal viability at single-cell resolution for periods of >1 week. We show that exogenous tau "seed" uptake, as measured by tau repeat domain (TauRD) reporter aggregation, increases the risk for subsequent neuronal death in vitro These results are the first to directly visualize neuronal TauRD aggregation and subsequent cell death in single human iPSC neurons. Specific morphologic strains or patterns of TauRD aggregation are then identified and associated with differing neurotoxicity. Furthermore, we demonstrate that familial AD iPSC neurons expressing the PSEN1 L435F mutation exhibit accelerated TauRD aggregation kinetics and a tau strain propagation bias when compared with control iPSC neurons.SIGNIFICANCE STATEMENT Neuronal intracellular aggregation of the microtubule binding protein tau occurs in Alzheimer's disease and related neurodegenerative tauopathies. Tau aggregates are believed to spread from neuron to neuron via prion-like misfolded tau seeds. Our work develops a human neuronal live-imaging system to visualize seeded tau aggregation and tau-induced neurotoxicity within single neurons. Using an aggregation-sensing tau reporter, we find that neuronal uptake and propagation of tau seeds reduces subsequent survival. In addition, human induced pluripotent stem cell (iPSC) neurons carrying an Alzheimer's disease-causing mutation in presenilin-1 undergo tau seeding more rapidly than control iPSC neurons. However, they do not show subsequent differences in neuronal survival. Finally, specific morphologies of tau aggregates are associated with increased neurotoxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndromes Neurotóxicas/patologia , Tauopatias/patologia , Proteínas tau/toxicidade , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Presenilina-1/biossíntese , Presenilina-1/genética , Proteínas tau/genética , Proteínas tau/metabolismo
12.
Acta Neuropathol ; 141(2): 217-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33319314

RESUMO

Presenilin-1 (PSEN1) mutations cause familial Alzheimer's disease (FAD) characterized by early age of onset (AoO). Examination of a large kindred harboring the PSEN1-E280A mutation reveals a range of AoO spanning 30 years. The pathophysiological drivers and clinical impact of AoO variation in this population are unknown. We examined brains of 23 patients focusing on generation and deposition of beta-amyloid (Aß) and Tau pathology profile. In 14 patients distributed at the extremes of AoO, we performed whole-exome capture to identify genotype-phenotype correlations. We also studied kinome activity, proteasome activity, and protein polyubiquitination in brain tissue, associating it with Tau phosphorylation profiles. PSEN1-E280A patients showed a bimodal distribution for AoO. Besides AoO, there were no clinical differences between analyzed groups. Despite the effect of mutant PSEN1 on production of Aß, there were no relevant differences between groups in generation and deposition of Aß. However, differences were found in hyperphosphorylated Tau (pTau) pathology, where early onset patients showed severe pathology with diffuse aggregation pattern associated with increased activation of stress kinases. In contrast, late-onset patients showed lesser pTau pathology and a distinctive kinase activity. Furthermore, we identified new protective genetic variants affecting ubiquitin-proteasome function in early onset patients, resulting in higher ubiquitin-dependent degradation of differentially phosphorylated Tau. In PSEN1-E280A carriers, altered γ-secretase activity and resulting Aß accumulation are prerequisites for early AoO. However, Tau hyperphosphorylation pattern, and its degradation by the proteasome, drastically influences disease onset in individuals with otherwise similar Aß pathology, hinting toward a multifactorial model of disease for FAD. In sporadic AD (SAD), a wide range of heterogeneity, also influenced by Tau pathology, has been identified. Thus, Tau-induced heterogeneity is a common feature in both AD variants, suggesting that a multi-target therapeutic approach should be used to treat AD.


Assuntos
Idade de Início , Doença de Alzheimer/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Fenótipo , Fosforilação , Presenilina-1/genética , Complexo de Endopeptidases do Proteassoma , Ubiquitinação , Sequenciamento do Exoma , Proteínas tau/genética
13.
Cell ; 183(6): 1699-1713.e13, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188775

RESUMO

To elucidate the role of Tau isoforms and post-translational modification (PTM) stoichiometry in Alzheimer's disease (AD), we generated a high-resolution quantitative proteomics map of 95 PTMs on multiple isoforms of Tau isolated from postmortem human tissue from 49 AD and 42 control subjects. Although Tau PTM maps reveal heterogeneity across subjects, a subset of PTMs display high occupancy and frequency for AD, suggesting importance in disease. Unsupervised analyses indicate that PTMs occur in an ordered manner, leading to Tau aggregation. The processive addition and minimal set of PTMs associated with seeding activity was further defined by analysis of size-fractionated Tau. To summarize, features in the Tau protein critical for disease intervention at different stages of disease are identified, including enrichment of 0N and 4R isoforms, underrepresentation of the C terminus, an increase in negative charge in the proline-rich region (PRR), and a decrease in positive charge in the microtubule binding domain (MBD).


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Progressão da Doença , Humanos , Análise de Componente Principal , Isoformas de Proteínas/metabolismo
14.
Acta Neuropathol Commun ; 8(1): 168, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076986

RESUMO

Recent studies suggest that misfolded tau molecules can be released, and taken up by adjacent neurons, propagating proteopathic seeds across neural systems. Yet critical to understanding whether tau propagation is relevant in pathophysiology of disease would be to learn if it alters neuronal properties. We utilized high resolution multi-color in situ hybridization technology, RNAScope, in a well-established tau transgenic animal, and found that a subset of neurons in the cortex do not appear to express the transgene, but do develop phospho-tau positive inclusions, consistent with having received tau seeds. Recipient neurons show decreases in their expression of synaptophysin, CAMKIIα, and mouse tau in both young and old animals. These results contrast with neurons that develop tau aggregates and also overexpress the transgene, which have few changes in expression of metabolic and synaptic markers. Taken together, these results strongly suggest that tau propagation impacts neuronal functional integrity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Expressão Gênica , Neurônios/metabolismo , Sinaptofisina/genética , Proteínas tau/genética , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Hibridização In Situ , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Camundongos , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Tauopatias/genética , Proteínas tau/metabolismo
15.
Acta Neuropathol Commun ; 8(1): 137, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811565

RESUMO

Microangiopathy, including proliferation of small diameter capillaries, increasing vessel tortuosity, and increased capillary blockage by leukocytes, was previously observed in the aged rTg4510 mouse model. Similar gene expression changes related to angiogenesis were observed in both rTg4510 and Alzheimer's disease (AD). It is uncertain if tau is directly responsible for these vascular changes by interacting directly with microvessels, and/or if it contributes indirectly via neurodegeneration and concurrent neuronal loss and inflammation. To better understand the nature of tau-related microangiopathy in human AD and in tau mice, we isolated capillaries and observed that bioactive soluble tau protein could be readily detected in association with vasculature. To examine whether this soluble tau is directly responsible for the microangiopathic changes, we made use of the tetracycline-repressible gene expression cassette in the rTg4510 mouse model and measured vascular pathology following tau reduction. These data suggest that reduction of tau is insufficient to alter established microvascular complications including morphological alterations, enhanced expression of inflammatory genes involved in leukocyte adherence, and blood brain barrier compromise. These data imply that 1) soluble bioactive tau surprisingly accumulates at the blood brain barrier in human brain and in mouse models, and 2) the morphological and molecular phenotype of microvascular disturbance does not resolve with reduction of whole brain soluble tau. Additional consideration of vascular-directed therapies and strategies that target tau in the vascular space may be required to restore normal function in neurodegenerative disease.


Assuntos
Doença de Alzheimer/patologia , Barreira Hematoencefálica/patologia , Doenças de Pequenos Vasos Cerebrais/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Doenças de Pequenos Vasos Cerebrais/metabolismo , Humanos , Camundongos
16.
Nat Med ; 26(8): 1256-1263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572268

RESUMO

Alzheimer's disease (AD) causes unrelenting, progressive cognitive impairments, but its course is heterogeneous, with a broad range of rates of cognitive decline1. The spread of tau aggregates (neurofibrillary tangles) across the cerebral cortex parallels symptom severity2,3. We hypothesized that the kinetics of tau spread may vary if the properties of the propagating tau proteins vary across individuals. We carried out biochemical, biophysical, MS and both cell- and animal-based-bioactivity assays to characterize tau in 32 patients with AD. We found striking patient-to-patient heterogeneity in the hyperphosphorylated species of soluble, oligomeric, seed-competent tau. Tau seeding activity correlates with the aggressiveness of the clinical disease, and some post-translational modification (PTM) sites appear to be associated with both enhanced seeding activity and worse clinical outcomes, whereas others are not. These data suggest that different individuals with 'typical' AD may have distinct biochemical features of tau. These data are consistent with the possibility that individuals with AD, much like people with cancer, may have multiple molecular drivers of an otherwise common phenotype, and emphasize the potential for personalized therapeutic approaches for slowing clinical progression of AD.


Assuntos
Doença de Alzheimer/genética , Disfunção Cognitiva/genética , Agregação Patológica de Proteínas/genética , Proteínas tau/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Disfunção Cognitiva/patologia , Feminino , Heterogeneidade Genética , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/genética , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Agregação Patológica de Proteínas/patologia , Índice de Gravidade de Doença
17.
Acta Neuropathol ; 139(1): 3-25, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686182

RESUMO

The term "propagon" is used to define proteins that may transmit misfolding in vitro, in tissues or in organisms. Among propagons, misfolded tau is thought to be involved in the pathogenic mechanisms of various "tauopathies" that include Alzheimer's disease, progressive supranuclear palsy, and argyrophilic grain disease. Here, we review the available data in the literature and point out how the prion-like tau propagation has been extended from Alzheimer's disease to tauopathies. First, in Alzheimer's disease, the progression of tau aggregation follows stereotypical anatomical stages which may be considered as spreading. The mechanisms of the propagation are now subject to intensive and controversial research. It has been shown that tau may be secreted in the interstitial fluid in an active manner as reflected by high and constant concentration of extracellular tau during Alzheimer's pathology. Animal and cell models have been devised to mimic tau seeding and propagation, and despite their limitations, they have further supported to the prion-like propagation hypothesis. Finally, such new ways of thinking have led to different therapeutic strategies in anti-tau immunotherapy among tauopathies and have stimulated new clinical trials. However, it appears that the prion-like propagation hypothesis mainly relies on data obtained in Alzheimer's disease. From this review, it appears that further studies are needed (1) to characterize extracellular tau species, (2) to find the right pathological tau species to target, (3) to follow in vivo tau pathology by brain imaging and biomarkers and (4) to interpret current clinical trial results aimed at reducing the progression of these pathologies. Such inputs will be essential to have a comprehensive view of these promising therapeutic strategies in tauopathies.


Assuntos
Imunoterapia/métodos , Deficiências na Proteostase/patologia , Tauopatias/patologia , Animais , Humanos , Deficiências na Proteostase/terapia , Tauopatias/terapia
18.
Mol Ther Methods Clin Dev ; 15: 320-332, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31788496

RESUMO

Adeno-associated virus (AAV) capsid libraries have generated improved transgene delivery vectors. We designed an AAV library construct, iTransduce, that combines a peptide library on the AAV9 capsid with a Cre cassette to enable sensitive detection of transgene expression. After only two selection rounds of the library delivered intravenously in transgenic mice carrying a Cre-inducible fluorescent protein, we flow sorted fluorescent cells from brain, and DNA sequencing revealed two dominant capsids. One of the capsids, termed AAV-F, mediated transgene expression in the brain cortex more than 65-fold (astrocytes) and 171-fold (neurons) higher than the parental AAV9. High transduction efficiency was sex-independent and sustained in two mouse strains (C57BL/6 and BALB/c), making it a highly useful capsid for CNS transduction of mice. Future work in large animal models will test the translation potential of AAV-F.

19.
Acta Neuropathol Commun ; 7(1): 171, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703739

RESUMO

The detection of amyloid beta deposits and neurofibrillary tangles, both hallmarks of Alzheimer's disease (AD), is key to understanding the mechanisms underlying these pathologies. Luminescent conjugated oligothiophenes (LCOs) enable fluorescence imaging of these protein aggregates. Using LCOs and multiphoton microscopy, individual tangles and amyloid beta deposits were labeled in vivo and imaged longitudinally in a mouse model of tauopathy and cerebral amyloidosis, respectively. Importantly, LCO HS-84, whose emission falls in the green region of the spectrum, allowed for the first time longitudinal imaging of tangle dynamics following a single intravenous injection. In addition, LCO HS-169, whose emission falls in the red region of the spectrum, successfully labeled amyloid beta deposits, allowing multiplexing with other reporters whose emission falls in the green region of the spectrum. In conclusion, this method can provide a new approach for longitudinal in vivo imaging using multiphoton microscopy of AD pathologies as well as other neurodegenerative diseases associated with protein aggregation in mouse models.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/patologia , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Emaranhados Neurofibrilares/patologia , Tauopatias/diagnóstico por imagem , Tauopatias/patologia , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Medições Luminescentes , Masculino , Camundongos Transgênicos , Agregação Patológica de Proteínas/diagnóstico por imagem , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA