Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Antimicrob Agents Chemother ; : e0024224, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767379

RESUMO

Nitrofurantoin resistance in Escherichia coli is primarily caused by mutations damaging two enzymes, NfsA and NfsB. Studies based on small isolate collections with defined nitrofurantoin MICs have found significant random genetic drift in nfsA and nfsB, making it extremely difficult to predict nitrofurantoin resistance from whole-genome sequence (WGS) where both genes are not obviously disrupted by nonsense or frameshift mutations or insertional inactivation. Here, we report a WGS survey of 200 oqxAB-negative E. coli from community urine samples, of which 34 were nitrofurantoin resistant. We characterized individual non-synonymous mutations seen in nfsA and nfsB among this collection using complementation cloning and NfsA/B enzyme assays in cell extracts. We definitively identified R203C, H11Y, W212R, A112E, and A112T in NfsA and R121C, Q142H, F84S, P163H, W46R, K57E, and V191G in NfsB as amino acid substitutions that reduce enzyme activity sufficiently to cause resistance. In contrast, E58D, I117T, K141E, L157F, A172S, G187D, and A188V in NfsA and G66D, M75I, V93A, and A174E in NfsB are functionally silent in this context. We identified that 9/166 (5.4%) nitrofurantoin-susceptible isolates were "pre-resistant," defined as having loss of function mutations in nfsA or nfsB. Finally, using NfsA/B enzyme assays and proteomics, we demonstrated that 9/34 (26.5%) ribE wild-type nitrofurantoin-resistant isolates also carried functionally wild-type nfsB or nfsB/nfsA. In these cases, NfsA/B activity was reduced through downregulated gene expression. Our biological understanding of nitrofurantoin resistance is greatly improved by this analysis but is still insufficient to allow its reliable prediction from WGS data.

2.
Antimicrob Agents Chemother ; 66(4): e0217921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35293781

RESUMO

We show that a previously described Klebsiella pneumoniae variant that is resistant to ceftazidime-avibactam plus meropenem-vaborbactam, has a ramR plus ompK36 mutation, and produces the V239G variant KPC-3 (V240G per the standard numbering system) exhibits resistance to ceftazidime-avibactam plus aztreonam and imipenem-relebactam but not cefepime-taniborbactam. The V239G variant does not generate collateral ß-lactam susceptibility like many KPC-3 variants associated with ceftazidime-avibactam resistance. Additional mutation of ompK35 and production of the OXA-48-like carbapenemase OXA-232 were required to confer cefepime-taniborbactam resistance.


Assuntos
Aztreonam , Klebsiella pneumoniae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Proteínas de Bactérias/genética , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , Cefepima/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Imipenem/farmacologia , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
3.
Antimicrob Agents Chemother ; 65(11): e0100421, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460299

RESUMO

Cefalexin is a widely used first-generation cephalosporin, and resistance in Escherichia coli is caused by extended-spectrum (e.g., CTX-M) and AmpC ß-lactamase production and therefore frequently coincides with third-generation cephalosporin resistance. However, we have recently identified large numbers of E. coli isolates from human infections, and from cattle, where cefalexin resistance is not ß-lactamase mediated. Here, we show, by studying laboratory-selected mutants, clinical isolates, and isolates from cattle, that OmpF porin disruption or downregulation is a major cause of cefalexin resistance in E. coli. Importantly, we identify multiple regulatory mutations that cause OmpF downregulation. In addition to mutation of ompR, already known to downregulate OmpF and OmpC porin production, we find that rseA mutation, which strongly activates the sigma E regulon, greatly increases DegP production, which degrades OmpF, OmpC, and OmpA. Furthermore, we reveal that mutations affecting lipopolysaccharide structure, exemplified by the loss of GmhB, essential for lipopolysaccharide heptosylation, also modestly activate DegP production, resulting in OmpF degradation. Remarkably, given the critical importance attached to such systems for normal E. coli physiology, we find evidence for DegP-mediated OmpF downregulation and gmhB and rseA loss-of-function mutation in E. coli isolates derived from human infections. Finally, we show that these regulatory mutations enhance the ability of group 1 CTX-M ß-lactamase to confer reduced carbapenem susceptibility, particularly those mutations that cause OmpC in addition to OmpF downregulation.


Assuntos
Proteínas da Membrana Bacteriana Externa , Cefalexina , Farmacorresistência Bacteriana/genética , Escherichia coli , Porinas/genética , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Carbapenêmicos , Bovinos , Cefalexina/farmacologia , Regulação para Baixo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
Microb Genom ; 7(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33416467

RESUMO

Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae (Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-susceptibility to carbapenems and other beta-lactam antibiotics. Whilst it has been proposed that the urban water cycle facilitates transmission of pathogens between clinical settings and the environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in contemporaneous samples of wastewater from an English hospital and influent to the associated wastewater treatment plant (WWTP). As we aimed to characterize representative samples of Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were of equal dominance in the hospital wastewater, and four other Klebsiella species were present in low abundance in this sample. In contrast, despite being the species most closely associated with healthcare settings, Kpne was the dominant species within the WWTP influent. In total, 29 % of all isolates harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively recovered from the hospital wastewater. This gene was far more common in Korn (68 % of isolates) than in Kpne (3.4 % of isolates). In general plasmid-borne, but not chromosomal, resistance genes were significantly enriched in the hospital wastewater sample. These data implicate hospital wastewater as an important reservoir for antibiotic-resistant Klebsiella, and point to an unsuspected role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne blaOXA-48. This article contains data hosted by Microreact.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Enterobacteriaceae/enzimologia , Enterobacteriaceae/isolamento & purificação , Águas Residuárias/microbiologia , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Inglaterra , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Prevalência , Purificação da Água , beta-Lactamases/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-33139281

RESUMO

Fluoroquinolone resistance in Stenotrophomonas maltophilia is multifactorial, but the most significant factor is overproduction of efflux pumps, particularly SmeDEF, following mutation. Here, we report that mutations in the glycosyl transferase gene smlt0622 in S. maltophilia K279a mutant K M6 cause constitutive activation of SmeDEF production, leading to elevated levofloxacin MIC. Selection of a levofloxacin-resistant K M6 derivative, K M6 LEVr, allowed identification of a novel two-component regulatory system, Smlt2645/6 (renamed SmaRS). The sensor kinase Smlt2646 (SmaS) is activated by mutation in K M6 LEVr causing overproduction of two novel ABC transporters and the known aminoglycoside efflux pump SmeYZ. Overproduction of one ABC transporter, Smlt1651-4 (renamed SmaCDEF), causes levofloxacin resistance in K M6 LEVr Overproduction of the other ABC transporter, Smlt2642/3 (renamed SmaAB), and SmeYZ both contribute to the elevated amikacin MIC against K M6 LEVr Accordingly, we have identified two novel ABC transporters associated with antimicrobial drug resistance in S. maltophilia and two novel regulatory systems whose mutation causes resistance to levofloxacin, clinically important as a promising drug for monotherapy against this highly resistant pathogen.


Assuntos
Stenotrophomonas maltophilia , Amicacina , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Stenotrophomonas maltophilia/genética
6.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32660988

RESUMO

Serine ß-lactamases are dominant causes of ß-lactam resistance in Klebsiella pneumoniae isolates. Recently, this has driven clinical deployment of the ß-lactam-ß-lactamase inhibitor pairs ceftazidime/avibactam and meropenem/vaborbactam. We show that four steps, i.e., ompK36 and ramR mutation plus carriage of OXA-232 and KPC-3-D178Y variant ß-lactamases, confer ceftazidime/avibactam and meropenem/vaborbactam resistance when both pairs are used together. These findings have implications for decision making about sequential and combinatorial use of these ß-lactam-ß-lactamase inhibitor pairs to treat K. pneumoniae infections.


Assuntos
Ceftazidima , Klebsiella pneumoniae , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Ácidos Borônicos , Ceftazidima/farmacologia , Combinação de Medicamentos , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-32457105

RESUMO

Colistin resistance in Klebsiella pneumoniae is predominantly caused by mutations that increase expression of the arn (also known as pbg or pmrF) operon. Expression is activated by the PhoPQ and PmrAB two-component systems. Constitutive PhoPQ activation occurs directly by mutation or following loss of MgrB. PhoPQ may also cross-activate PmrAB via the linker protein PmrD. Using proteomics, we show that MgrB loss causes a wider proteomic effect than direct PhoPQ activation, suggesting additional targets for MgrB. Different mgrB mutations cause different amounts of Arn protein production, which correlated with colistin MICs. Disruption of phoP in an mgrB mutant had a reciprocal effect to direct activation of PhoQ in a wild-type background, but the regulated proteins showed almost total overlap. Disruption of pmrD or pmrA slightly reduced Arn protein production in an mgrB mutant, but production was still high enough to confer colistin resistance; disruption of phoP conferred wild-type Arn production and colistin MIC. Activation of PhoPQ directly or through mgrB mutation did not significantly activate PmrAB or PmrC production, but direct activation of PmrAB by mutation was able to do this, and also activated Arn production and conferred colistin resistance. There was little overlap between the PmrAB and PhoPQ regulons. We conclude that under the conditions used for colistin susceptibility testing, PhoPQ-PmrD-PmrAB cross-regulation is not significant and that independent activation of PhoPQ or PmrAB is the main reason that Arn protein production increases above the threshold required for colistin resistance.


Assuntos
Colistina , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Proteômica , Transdução de Sinais
8.
Artigo em Inglês | MEDLINE | ID: mdl-32312773

RESUMO

Meropenem-vaborbactam resistance in Klebsiella pneumoniae isolates is associated with loss-of-function mutations in the OmpK35 and OmpK36 porins. We identify two previously unknown loss-of-function mutations that confer cefuroxime resistance in K. pneumoniae isolates. The proteins lost were NlpD and KvrA; the latter is a transcriptional repressor that controls capsule production. We demonstrate that KvrA loss reduces OmpK35 and OmpK36 porin production, which confers reduced susceptibility to meropenem-vaborbactam in a KPC-3-producing K. pneumoniae isolate.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Borônicos , Regulação para Baixo , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Porinas/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo
9.
Front Microbiol ; 11: 592153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510718

RESUMO

Pseudomonas aeruginosa, a well-known cause of nosocomial infection, is frequently antibiotic resistant and this complicates treatment. Links between oxidative stress responses inducing antibiotic resistance through over-production of RND-type efflux pumps have been reported in P. aeruginosa, but this has not previously been associated with MFS-type efflux pumps. Two MFS efflux pumps encoded by mfs1 and mfs2 were selected for study because they were found to be sodium hypochlorite (NaOCl) inducible. Antibiotic susceptibility testing was used to define the importance of these MFS pumps in antibiotic resistance and proteomics was used to characterize the resistance mechanisms involved. The results revealed that mfs1 is NaOCl inducible whereas mfs2 is NaOCl, N-Ethylmaleimide and t-butyl hydroperoxide inducible. Deletion of mfs1 or mfs2 did not affect antibiotic or paraquat susceptibility. However, over-production of Mfs1 and Mfs2 reduced susceptibility to aminoglycosides, quinolones, and paraquat. Proteomics, gene expression analysis and targeted mutagenesis showed that over-production of the MexXY RND-type efflux pump in a manner dependent upon armZ, but not amgRS, is the cause of reduced antibiotic susceptibility upon over-production of Mfs1 and Mfs2. mexXY operon expression analysis in strains carrying various lengths of mfs1 and mfs2 revealed that at least three transmembrane domains are necessary for mexXY over-expression and decreased antibiotic susceptibility. Over-expression of the MFS-type efflux pump gene tetA(C) did not give the same effect. Changes in paraquat susceptibility were independent of mexXY and armZ suggesting that it is a substrate of Mfs1 and Mfs2. Altogether, this is the first evidence of cascade effects where the over-production of an MFS pump causes over-production of an RND pump, in this case MexXY via increased armZ expression.

10.
Mol Microbiol ; 113(2): 492-503, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31773806

RESUMO

The ß-lactam antibiotic ceftazidime is one of the handful of drugs with proven clinical efficacy against the important opportunistic human pathogen Stenotrophomonas maltophilia. Here, we show that mutations in the energy transducer TonB, encoded by smlt0009 in S. maltophilia, confer ceftazidime resistance and smlt0009 mutants have reduced uptake of ceftazidime. This breaks the dogma that ß-lactams enter Gram-negative bacteria only by passive diffusion through outer membrane porins. We also show that ceftazidime-resistant TonB mutants are cross-resistant to fluoroquinolone antimicrobials and a siderophore-conjugated lactivicin antibiotic designed to target TonB-dependent uptake. This implies that attempts to improve the penetration of antimicrobials into S. maltophilia by conjugating them with TonB substrates will suffer from the fact that ß-lactams and fluoroquinolones coselect resistance to these novel and otherwise promising antimicrobials. Finally, we show that smlt0009 mutants already exist among S. maltophilia clinical isolates and have reduced susceptibility to siderophore-conjugated lactivicin, despite the in vitro growth impairment seen in smlt0009 mutants selected in the laboratory.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Proteínas de Membrana/genética , Stenotrophomonas maltophilia/efeitos dos fármacos , beta-Lactamas/farmacologia , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Peptídeos Cíclicos/farmacologia , Sideróforos/farmacologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31712205

RESUMO

Aminoglycoside resistance in Stenotrophomonas maltophilia is multifactorial, but the most significant mechanism is overproduction of the SmeYZ efflux system. By studying laboratory-selected mutants and clinical isolates, we show here that damage to the 50S ribosomal protein L1 (RplA) activates SmeYZ production. We also show that gentamicin and minocycline, which target the ribosome, induce expression of smeYZ These findings explain the role of SmeYZ in both intrinsic and mutationally acquired aminoglycoside resistance.


Assuntos
Aminoglicosídeos/metabolismo , Antibacterianos/farmacologia , Proteínas Ribossômicas/genética , Ribossomos/efeitos dos fármacos , Stenotrophomonas maltophilia/genética , Farmacorresistência Bacteriana/genética , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Mutação , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/metabolismo
12.
Front Microbiol ; 10: 2319, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636625

RESUMO

Gram-negative infections are increasingly difficult to treat because of their impermeable outer membranes (OM) and efflux pumps which maintain a low intracellular accumulation of antibiotics within cells. Historically, measurement of accumulation of drugs or dyes within Gram-negative cells has concentrated on analyzing whole bacterial populations. Here, we have developed a method to measure the intracellular accumulation of ethidium bromide, a fluorescent DNA intercalating dye, in single cells using flow cytometry. Bacterial cells were stained with SYTOTM 84 to easily separate cells from background cell debris. Ethidium bromide fluorescence was then measured within the SYTOTM 84 positive population to measure accumulation. In S. Typhimurium SL1344, ethidium bromide accumulation was low, however, in a number of efflux mutants, accumulation of ethidium bromide increased more than twofold, comparable to previous whole population analysis of accumulation. We demonstrate simultaneous measurement of ethidium bromide accumulation and GFP allowing quantification of gene expression or other facets of phenotype in single cells. In addition, we show here that this assay can be adapted for use with efflux inhibitors, with both Gram-negative and Gram-positive bacteria, and with other fluorescent substrates with different fluorescence spectra.

13.
J Antimicrob Chemother ; 73(5): 1263-1266, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29462315

RESUMO

Background: Stenotrophomonas maltophilia is an opportunistic human pathogen causing nosocomial infections worldwide. S. maltophilia infection is of particular concern due to its inherent resistance to currently used antibiotics. Proton motive force-driven transporters of the major facilitator superfamily frequently contribute to the efflux of substances, including antibiotics, across cell membranes. Methods: An mfsA expression plasmid (pMfsA) was constructed and transferred into bacterial strains by electroporation. The antibiotic susceptibility levels of S. maltophilia strains were determined using standard methods. Results and conclusions: S. maltophilia MfsA is an efflux pump associated with paraquat resistance. We show here that plasmid-mediated overexpression of mfsA in WT S. maltophilia K279a increased resistance not only to paraquat but also to second-generation fluoroquinolone antibiotics, i.e. ciprofloxacin, norfloxacin, levofloxacin and ofloxacin. Ciprofloxacin was used as a representative drug. Addition of the proton motive force inhibitor carbonyl cyanide-m-chlorophenylhydrazone increases susceptibility to ciprofloxacin. Taken together these results suggest that MsfA is a novel fluoroquinolone efflux pump of S. maltophilia. Moreover, heterologous expression of mfsA in other Gram-negative pathogenic bacteria conferred resistance to paraquat as well as to fluoroquinolones. Thus, if this determinant was horizontally transferred, it could cause the spread of fluoroquinolone resistance among bacterial species.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/biossíntese , Farmacorresistência Bacteriana , Fluoroquinolonas/farmacologia , Expressão Gênica , Proteínas de Membrana Transportadoras/biossíntese , Stenotrophomonas maltophilia/efeitos dos fármacos , Proteínas de Bactérias/genética , Vetores Genéticos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Plasmídeos , Stenotrophomonas maltophilia/metabolismo , Transformação Bacteriana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA