Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627266

RESUMO

In respiring mitochondria, the proton gradient across the inner mitochondrial membrane is used to drive ATP production. Mitochondrial uncouplers, which are typically weak acid protonophores, can disrupt this process to induce mitochondrial dysfunction and apoptosis in cancer cells. We have shown that bisaryl urea-based anion transporters can also mediate mitochondrial uncoupling through a novel fatty acid-activated proton transport mechanism, where the bisaryl urea promotes the transbilayer movement of deprotonated fatty acids and proton transport. In this paper, we investigated the impact of replacing the urea group with squaramide, amide and diurea anion binding motifs. Bisaryl squaramides were found to depolarise mitochondria and reduce MDA-MB-231 breast cancer cell viability to similar extents as their urea counterpart. Bisaryl amides and diureas were less active and required higher concentrations to produce these effects. For all scaffolds, the substitution of the bisaryl rings with lipophilic electron-withdrawing groups was required for activity. An investigation of the proton transport mechanism in vesicles showed that active compounds participate in fatty acid-activated proton transport, except for a squaramide analogue, which was sufficiently acidic to act as a classical protonophore and transport protons in the absence of free fatty acids.


Assuntos
Neoplasias , Prótons , Amidas , Ânions , Transporte Biológico , Ácidos Graxos , Mitocôndrias , Linhagem Celular Tumoral , Humanos
2.
ACS Chem Neurosci ; 14(15): 2634-2647, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466545

RESUMO

Chronic pain is a complex condition that remains resistant to current therapeutics. We previously synthesized a series of N-acyl amino acids (NAAAs) that inhibit the glycine transporter, GlyT2, some of which are also positive allosteric modulators of glycine receptors (GlyRs). In this study, we have synthesized a library of NAAAs that contain a phenylene ring within the acyl tail with the objective of improving efficacy at both GlyT2 and GlyRs and also identifying compounds that are efficacious as dual-acting modulators to enhance glycine neurotransmission. The most efficacious positive allosteric modulator of GlyRs was 2-[8-(2-octylphenyl)octanoylamino]acetic acid (8-8 OPGly) which potentiates the EC5 for glycine activation of GlyRα1 by 1500% with an EC50 of 664 nM. Phenylene-containing NAAAs with a lysine headgroup were the most potent inhibitors of GlyT2 with (2S)-6-amino-2-[8-(3-octylphenyl)octanoylamino]hexanoic acid (8-8 MPLys) inhibiting GlyT2 with an IC50 of 32 nM. The optimal modulator across both proteins was (2S)-6-amino-2-[8-(2-octylphenyl)octanoylamino]hexanoic acid (8-8 OPLys), which inhibits GlyT2 with an IC50 of 192 nM and potentiates GlyRs by up to 335% at 1 µM. When tested in a dual GlyT2/GlyRα1 expression system, 8-8 OPLys caused the greatest reductions in the EC50 for glycine. This suggests that the synergistic effects of a dual-acting modulator cause greater enhancements in glycinergic activity compared to single-target modulators and may provide an alternate approach to the development of new non-opioid analgesics for the treatment of chronic pain.


Assuntos
Dor Crônica , Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Receptores de Glicina , Caproatos , Glicina/farmacologia , Glicina/metabolismo , Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA