Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Negl Trop Dis ; 15(1): e0009036, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33497375

RESUMO

BACKGROUND: In the absence of vaccines or drugs, insecticides are the mainstay of Aedes-borne disease control. Their utility is challenged by the slow deployment of resources, poor community compliance and inadequate household coverage. Novel application methods are required. METHODOLOGY AND PRINCIPAL FINDINGS: A 10% w/w metofluthrin "emanator" that passively disseminates insecticide from an impregnated net was evaluated in a randomized trial of 200 houses in Mexico. The devices were introduced at a rate of 1 per room and replaced at 3-week intervals. During each of 7 consecutive deployment cycles, indoor resting mosquitoes were sampled using aspirator collections. Assessments of mosquito landing behaviours were made in a subset of houses. Pre-treatment, there were no differences in Aedes aegypti indices between houses recruited to the control and treatment arms. Immediately after metofluthrin deployment, the entomological indices between the trial arms diverged. Averaged across the trial, there were significant reductions in Abundance Rate Ratios for total Ae. aegypti, female abundance and females that contained blood meals (2.5, 2.4 and 2.3-times fewer mosquitoes respectively; P<0.001). Average efficacy was 60.2% for total adults, 58.3% for females, and 57.2% for blood-fed females. The emanators also reduced mosquito landings by 90% from 12.5 to 1.2 per 10-minute sampling period (P<0.05). Homozygous forms of the pyrethroid resistant kdr alleles V410L, V1016L and F1534C were common in the target mosquito population; found in 39%, 24% and 95% of mosquitoes collected during the trial. CONCLUSIONS/SIGNIFICANCE: This is the first randomized control trial to evaluate the entomological impact of any volatile pyrethroid on urban Ae. aegypti. It demonstrates that volatile pyrethroids can have a sustained impact on Ae. aegypti population densities and human-vector contact indoors. These effects occur despite the presence of pyrethroid-resistant alleles in the target population. Formulations like these may have considerable utility for public health vector control responses.


Assuntos
Aedes/efeitos dos fármacos , Ciclopropanos/farmacologia , Fluorbenzenos/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Aedes/genética , Animais , Comportamento Animal , Dengue/transmissão , Entomologia , Características da Família , Feminino , Humanos , Resistência a Inseticidas/efeitos dos fármacos , Resistência a Inseticidas/genética , México , Mosquitos Vetores/genética , Prevalência , Piretrinas/farmacologia , Projetos de Pesquisa
2.
PLoS Negl Trop Dis ; 15(1): e0008972, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395435

RESUMO

Arbovirus infection in Aedes aegypti has historically been quantified from a sample of the adult population by pooling collected mosquitoes to increase detectability. However, there is a significant knowledge gap about the magnitude of natural arbovirus infection within areas of active transmission, as well as the sensitivity of detection of such an approach. We used indoor Ae. aegypti sequential sampling with Prokopack aspirators to collect all mosquitoes inside 200 houses with suspected active ABV transmission from the city of Mérida, Mexico, and tested all collected specimens by RT-PCR to quantify: a) the absolute arbovirus infection rate in individually tested Ae. aegypti females; b) the sensitivity of using Prokopack aspirators in detecting ABV-infected mosquitoes; and c) the sensitivity of entomological inoculation rate (EIR) and vectorial capacity (VC), two measures ABV transmission potential, to different estimates of indoor Ae. aegypti abundance. The total number of Ae. aegypti (total catch, the sum of all Ae. aegypti across all collection intervals) as well as the number on the first 10-min of collection (sample, equivalent to a routine adult aspiration session) were calculated. We individually tested by RT-PCR 2,161 Aedes aegypti females and found that 7.7% of them were positive to any ABV. Most infections were CHIKV (77.7%), followed by DENV (11.4%) and ZIKV (9.0%). The distribution of infected Aedes aegypti was overdispersed; 33% houses contributed 81% of the infected mosquitoes. A significant association between ABV infection and Ae. aegypti total catch indoors was found (binomial GLMM, Odds Ratio > 1). A 10-min indoor Prokopack collection led to a low sensitivity of detecting ABV infection (16.3% for detecting infected mosquitoes and 23.4% for detecting infected houses). When averaged across all infested houses, mean EIR ranged between 0.04 and 0.06 infective bites per person per day, and mean VC was 0.6 infectious vectors generated from a population feeding on a single infected host per house/day. Both measures were significantly and positively associated with Ae. aegypti total catch indoors. Our findings provide evidence that the accurate estimation and quantification of arbovirus infection rate and transmission risk is a function of the sampling effort, the local abundance of Aedes aegypti and the intensity of arbovirus circulation.


Assuntos
Aedes/virologia , Infecções por Arbovirus/epidemiologia , Mosquitos Vetores/virologia , Animais , Infecções por Arbovirus/diagnóstico , Infecções por Arbovirus/transmissão , Feminino , Masculino , Densidade Demográfica
3.
J Econ Entomol ; 113(5): 2473-2479, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32772116

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte, is a serious pest of corn and is often managed with transgenic corn producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt). This pest has developed field-evolved resistance to all commercially available Bt traits, beginning with Cry3Bb1 in 2009. Fitness costs may accompany Bt resistance, where individuals with alleles for Bt resistance have reduced fitness on non-Bt corn compared to Bt-susceptible individuals. In conjunction with non-Bt refuges, fitness costs can delay the evolution of Bt resistance. Importantly, ecological factors may affect the presence and magnitude of fitness costs. For western corn rootworm, available data suggest that fitness costs of Bt resistance may be present in some cases. Using two Cry3Bb1-resistant western corn rootworm strains (Hopkinton and Cresco), a fitness-cost experiment was performed by rearing rootworm in the absence of Bt for six generations to test for fitness costs of Cry3Bb1 resistance and the effect of larval rearing density on fitness costs. Fitness costs were detected for both strains; however, strains were still resistant to Cry3Bb1 corn at the end of the experiment. Cresco experienced a greater loss of resistance at low versus high density, but no effect of density was detected in Hopkinton. Our study shows that fitness costs can accompany Bt resistance in western corn rootworm and may be more pronounced under low larval density. Even though fitness costs were present, it appears that rootworm populations may remain resistant to Cry3Bb1 corn for years after resistance has evolved.


Assuntos
Bacillus thuringiensis , Besouros , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias , Besouros/genética , Endotoxinas , Resistência a Inseticidas , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética
4.
J Am Mosq Control Assoc ; 35(2): 107-112, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31442127

RESUMO

The World Health Organization (WHO) has recently recommended indoor residual spraying (IRS) as part of a vector control strategy to combat Aedes-borne diseases, including dengue, chikungunya, and Zika viruses. Hand compression sprayers have been used in malaria prevention and control programs worldwide since the 1950s and are a standard for IRS application. However, there are technological advances that should be considered to improve IRS application (e.g., flow-control valves, rechargeable-battery equipment, reduced-drift nozzles, etc.), particularly if interventions are performed in urban areas to target Aedes aegypti. Using WHO guidelines, we contrasted technical characteristics of potential IRS equipment including hand compression sprayers (Hudson X-pert, Goizper IK Vector Control Super), rechargeable-battery sprayers (Solo 416, Birchmeier REC 15ABZ, Hudson NeverPump), and motorized sprayers (Honda WJR 2525, Kawashima AK35GX). Measurements included flow rate, droplet size, battery/fuel life, and technical/physical characteristics. Flow rate, the most important parameter, of the Hudson X-pert was stabilized at 550 ml/min by the use of a control flow valve (CFV). The IK Vector Control Super had integrated CFVs and produced a similar flow as the Hudson X-pert. Rechargeable-battery equipment provided consistent flow as well as negligible noise. Motorized sprayers also produced consistent flow, but their weight, high noise pollution when used indoors, and high engine temperature made them highly unpleasant for technicians. We identify alternatives to the more traditional hand compression Hudson X-pert sprayer with technical and operational considerations for performing IRS.


Assuntos
Aedes , Habitação , Inseticidas , Controle de Mosquitos/instrumentação , Animais
5.
PLoS Negl Trop Dis ; 13(2): e0007203, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30817759

RESUMO

Challenges in maintaining high effectiveness of classic vector control in urban areas has renewed the interest in indoor residual spraying (IRS) as a promising approach for Aedes-borne disease prevention. While IRS has many benefits, application time and intrusive indoor applications make its scalability in urban areas difficult. Modifying IRS to account for Ae. aegypti resting behavior, named targeted IRS (TIRS, spraying walls below 1.5 m and under furniture) can reduce application time; however, an untested assumption is that modifications to IRS will not negatively impact entomological efficacy. We conducted a comparative experimental study evaluating the residual efficacy of classically-applied IRS (as developed for malaria control) compared to two TIRS application methods using a carbamate insecticide against a pyrethroid-resistant, field-derived Ae. aegypti strain. We performed our study within a novel experimental house setting (n = 9 houses) located in Merida (Mexico), with similar layouts and standardized contents. Classic IRS application (insecticide applied to full walls and under furniture) was compared to: a) TIRS: insecticide applied to walls below 1.5 m and under furniture, and b) Resting Site TIRS (RS-TIRS): insecticide applied only under furniture. Mosquito mortality was measured eight times post-application (out to six months post-application) by releasing 100 Ae. aegypti females /house and collecting live and dead individuals after 24 hrs exposure. Compared to Classic IRS, TIRS and RS-TIRS took less time to apply (31% and 82% reduction, respectively) and used less insecticide (38% and 85% reduction, respectively). Mortality of pyrethroid-resistant Ae. aegypti did not significantly differ among the three IRS application methods up to two months post application, and did not significantly differ between Classic IRS and TIRS up to four months post application. These data illustrate that optimizing IRS to more efficiently target Ae. aegypti can both reduce application time and insecticide volume with no apparent reduction in entomological efficacy.


Assuntos
Aedes/efeitos dos fármacos , Habitação , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Fenilcarbamatos/farmacologia , Animais , Feminino , Resistência a Inseticidas , México , Piretrinas/farmacologia
6.
PLoS One ; 13(7): e0200156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969492

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte, has evolved resistance to transgenic maize, Zea maize L., that produces the insecticidal protein Cry3Bb1, which is derived from the bacterium Bacillus thuringiensis. We hypothesized that the level of Cry3Bb1 resistance in populations of western corn rootworm could be influenced by farming practices. To test this hypothesis, we evaluated the effect of field history on resistance to Cry3Bb1 maize by western corn rootworm. In 2013 and 2014, rootworm adults were collected from the four types of maize fields: 1) current problem fields, 2) past problem fields, 3) rotated maize fields, and 4) continuous maize fields. Those field populations along with seven Bt-susceptible control populations were tested for Cry3Bb1 resistance with both plant-based and diet-based bioassays. All field populations were resistant to Cry3Bb1 regardless of field history, however, some variation in the degree of resistance was found. For all categories of field populations, larval survivorship on Cry3Bb1 maize was significantly higher than control populations, and did not differ from survival on non-Bt maize. Evidence of resistance to Cry3Bb1 maize in plant-based bioassays was further supported by diet-based bioassays and we found a positive relationship between LC50 values from diet-based bioassays and the larval survivorship in plant-based bioassays. This study provides evidence of Cry3Bb1 resistance throughout the agricultural landscape studied, irrespective of the field history, and highlights the need for improved resistance management approaches, such as better use of integrated pest management to better delay pest resistance.


Assuntos
Besouros , Produção Agrícola , Endotoxinas/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/genética , Zea mays/genética , Animais , Bacillus thuringiensis/genética , Endotoxinas/metabolismo , Resistência a Inseticidas , Iowa , Larva , Plantas Geneticamente Modificadas/metabolismo
7.
J Med Entomol ; 55(3): 747-751, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29365158

RESUMO

Mosquito abatement programs in Midwestern communities frequently exist within landscapes dominated by agriculture. Although separately managed, both agricultural pests and mosquitoes are targeted by similar classes of insecticides. As a result, there is the potential for unintended insecticide exposure to mosquito populations from agricultural pest management. To determine the impact that agricultural management practices have on mosquito insecticide susceptibility we compared the mortality of Aedes vexans (Meigen; Diptera: Culicidae) between populations sampled from locations with and without mosquito abatement in South Dakota, a region dominated by agricultural production. Collection locations were either within towns with mosquito abatement programs (n = 2; Brookings and Sioux Falls, SD) or located > 16 km from towns with mosquito abatement programs (n = 2; areas near Harrold and Willow Lake, SD). WHO bioassays were used to test susceptibly of adults to differing insecticide classes relative to their respective controls; 1) an organochlorine (dieldrin 4%), 2) an organophosphate (malathion 5%), and 3) a pyrethroid (lambda-cyhalothrin 0.05%). Corrected mortality did not significantly differ between locations with or without abatement; however, when locations were analized by proportion of developed land within the surrounding landscape pyrethroid mortality was significantly lower where crop production dominated the surrounding landscape and mosquito abatement was present. These data suggest that agricultural pest management may incidentally contribute to reduced mosquito susceptibility where overlap between agricultural pest management and mosquito abatement exists. Decoupling insecticide classes used by both agricultural and public health pest management programs may be necessary to ensure continued efficacy of pest management tools.


Assuntos
Aedes/efeitos dos fármacos , Dieldrin/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Malation/farmacologia , Nitrilas/farmacologia , Controle de Pragas , Piretrinas/farmacologia , Animais , Controle de Mosquitos , South Dakota
8.
Environ Entomol ; 46(2): 284-290, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334190

RESUMO

Cover crops are beneficial to agroecosystems because they decrease soil erosion and nutrient loss while increasing within-field plant diversity. Greater plant diversity within cropping systems can positively affect beneficial arthropod communities. We hypothesized that increasing plant diversity within annually rotated corn and soybean with the addition of a rye cover crop would positively affect the beneficial ground and canopy-dwelling communities compared with rotated corn and soybean grown without a cover crop. From 2011 through 2013, arthropod communities were measured at two locations in Iowa four times throughout each growing season. Pitfall traps were used to sample ground-dwelling arthropods within the corn and soybean plots and sweep nets were used to measure the beneficial arthropods in soybean canopies. Beneficial arthropods captured were identified to either class, order, or family. In both corn and soybean, community composition and total community activity density and abundance did not differ between plots that included the rye cover crop and plots without the rye cover crop. Most taxa did not significantly respond to the presence of the rye cover crop when analyzed individually, with the exceptions of Carabidae and Gryllidae sampled from soybean pitfall traps. Activity density of Carabidae was significantly greater in soybean plots that included a rye cover crop, while activity density of Gryllidae was significantly reduced in plots with the rye cover crop. Although a rye cover crop may be agronomically beneficial, there may be only limited effects on beneficial arthropods when added within an annual rotation of corn and soybean.


Assuntos
Artrópodes , Biodiversidade , Produtos Agrícolas/crescimento & desenvolvimento , Controle Biológico de Vetores , Secale/crescimento & desenvolvimento , Animais , Iowa , Distribuição Aleatória , Estações do Ano
9.
Environ Entomol ; 45(5): 1154-1160, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27550160

RESUMO

Crop rotation alters agroecosystem diversity temporally, and increasing the number of crops in rotation schemes can increase crop yields and reduce reliance on pesticides. We hypothesized that increasing the number of crops in annual rotation schemes would positively affect ground-dwelling beneficial arthropod communities. During 2012 and 2013, pitfall traps were used to measure activity-density and diversity of ground-dwelling communities within three previously established, long-term crop rotation studies located in Wisconsin and Illinois. Rotation schemes sampled included continuous corn, a 2-yr annual rotation of corn and soybean, and a 3-yr annual rotation of corn, soybean, and wheat. Insects captured were identified to family, and non-insect arthropods were identified to class, order, or family, depending upon the taxa. Beneficial arthropods captured included natural enemies, granivores, and detritivores. The beneficial community from continuous corn plots was significantly more diverse compared with the community in the 2-yr rotation, whereas the community in the 3-yr rotation did not differ from either rotation scheme. The activity-density of the total community and any individual taxa did not differ among rotation schemes in either corn or soybean. Crop species within all three rotation schemes were annual crops, and are associated with agricultural practices that make infield habitat subject to anthropogenic disturbances and temporally unstable. Habitat instability and disturbance can limit the effectiveness and retention of beneficial arthropods, including natural enemies, granivores, and detritivores. Increasing non-crop and perennial species within landscapes in conjunction with more diverse rotation schemes may increase the effect of biological control of pests by natural enemies.


Assuntos
Agricultura/métodos , Artrópodes/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Controle Biológico de Vetores , Animais , Illinois , Densidade Demográfica , Glycine max/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Wisconsin , Zea mays/crescimento & desenvolvimento
10.
J Econ Entomol ; 109(5): 2096-104, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27498115

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith & Lawrence, are major pests of corn (Zea mays L.). Corn producing Bacillus thuringiensis (Bt) toxins are widely used to manage Diabrotica spp.; however, Bt resistance by D. v. virgifera has led to high levels of feeding injury in the field. We tested whether field history affected root injury and abundance of adult Diabrotica spp. In 2013 and 2014, four types of cornfields were sampled: 1) recently rotated fields, 2) continuous cornfields, 3) fields with a history of injury to Bt corn (past problem fields), and 4) fields with greater than one node of injury to Bt corn at the time of sampling (current problem fields). Data were collected on field history, root injury, and the abundance of adult Diabrotica spp. from each field. Root injury and the abundance of D. v. virgifera were significantly greater in current problem fields compared to the other field types, while D. barberi were significantly more abundant in recently rotated fields. Root injury and the abundance of D. v. virgifera did not differ among recently rotated fields, continuous cornfields, and past problem fields. Analysis of field history showed that recently rotated fields were characterized by significantly less Bt corn, soil-applied insecticides, and years planted to corn continuously. These results suggest that greater cropping practice diversity can reduce management inputs for Diabrotica spp.; however, its effects on resistance evolution remain undetermined.


Assuntos
Proteínas de Bactérias/farmacologia , Besouros/fisiologia , Produção Agrícola/métodos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Zea mays/fisiologia , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Besouros/crescimento & desenvolvimento , Herbivoria , Iowa , Larva/fisiologia , Controle Biológico de Vetores , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/química , Dinâmica Populacional , Especificidade da Espécie
11.
J Econ Entomol ; 109(4): 1691-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325884

RESUMO

Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the potential to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abundance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae captured within cornfields were true armyworm and common stalk borer. Cornfields with a rye cover crop had significantly greater abundance of true armyworm and greater proportion of injured corn. Both true armyworm abundance and feeding injury were significantly greater in the interior of cornfields with rye. Common stalk borer abundance did not differ between cornfields with or without rye cover. Farmers planting corn following a rye cover crop should be aware of the potential for increased presence of true armyworm and for greater injury to corn.


Assuntos
Produção Agrícola/métodos , Herbivoria , Mariposas/fisiologia , Secale/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Animais , Iowa , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Estações do Ano
12.
J Econ Entomol ; 109(4): 1872-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27329619

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn in the United States, and recent management of western corn rootworm has included planting of Bt corn. Beginning in 2009, western corn rootworm populations with resistance to Cry3Bb1 corn and mCry3A corn were found in Iowa and elsewhere. To date, western corn rootworm populations have remained susceptible to corn producing Bt toxin Cry34/35Ab1. In this study, we used single-plant bioassays to test field populations of western corn rootworm for resistance to Cry34/35Ab1 corn, Cry3Bb1 corn, and mCry3A corn. Bioassays included nine rootworm populations collected from fields where severe injury to Bt corn had been observed and six control populations that had never been exposed to Bt corn. We found incomplete resistance to Cry34/35Ab1 corn among field populations collected from fields where severe injury to corn producing Cry34/35Ab1, either singly or as a pyramid, had been observed. Additionally, resistance to Cry3Bb1 corn and mCry3A corn was found among the majority of populations tested. These first cases of resistance to Cry34/35Ab1 corn, and the presence of resistance to multiple Bt toxins by western corn rootworm, highlight the potential vulnerability of Bt corn to the evolution of resistance by western corn rootworm. The use of more diversified management practices, in addition to insect resistance management, likely will be essential to sustain the viability of Bt corn for management of western corn rootworm.


Assuntos
Proteínas de Bactérias/farmacologia , Besouros/efeitos dos fármacos , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Resistência a Inseticidas , Plantas Geneticamente Modificadas/fisiologia , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Besouros/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Zea mays/genética
13.
Pest Manag Sci ; 72(1): 190-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25652190

RESUMO

BACKGROUND: Diabrotica virgifera virgifera LeConte is a major pest of corn and causes over a billion dollars of economic loss annually through yield reductions and management costs. Corn producing toxins derived from Bacillus thuringiensis (Bt) has been developed to help manage D. v. virgifera. However, previous studies have demonstrated the ability of this species to evolve resistance to Bt toxins in both laboratory and field settings. RESULTS: We used an experimental evolution approach to test the refuge strategies for delaying resistance of D. v. virgifera to corn producing Bt toxin Cry34/35Ab1. In the absence of refuges, D. v. virgifera developed resistance to Bt corn after three generations of selection. In some cases, non-Bt refuges reduced the level of resistance compared with the strain selected in the absence of refuges, but refuge strains did show reduced susceptibility to Bt corn compared with the unselected strain. CONCLUSIONS: In this study, non-Bt refuges delayed resistance to Bt corn by D. v. virgifera in some cases but not others. Combining the refuge strategy with pyramids of multiple Bt toxins and applying other pest management strategies will likely be necessary to delay resistance of D. v. virgifera to Bt corn.


Assuntos
Evolução Biológica , Besouros/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Controle Biológico de Vetores , Zea mays/genética , Animais , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Besouros/genética , Besouros/crescimento & desenvolvimento , Endotoxinas/genética , Endotoxinas/farmacologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética
14.
Proc Natl Acad Sci U S A ; 111(14): 5141-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24639498

RESUMO

The widespread planting of crops genetically engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) places intense selective pressure on pest populations to evolve resistance. Western corn rootworm is a key pest of maize, and in continuous maize fields it is often managed through planting of Bt maize. During 2009 and 2010, fields were identified in Iowa in which western corn rootworm imposed severe injury to maize producing Bt toxin Cry3Bb1. Subsequent bioassays revealed Cry3Bb1 resistance in these populations. Here, we report that, during 2011, injury to Bt maize in the field expanded to include mCry3A maize in addition to Cry3Bb1 maize and that laboratory analysis of western corn rootworm from these fields found resistance to Cry3Bb1 and mCry3A and cross-resistance between these toxins. Resistance to Bt maize has persisted in Iowa, with both the number of Bt fields identified with severe root injury and the ability western corn rootworm populations to survive on Cry3Bb1 maize increasing between 2009 and 2011. Additionally, Bt maize targeting western corn rootworm does not produce a high dose of Bt toxin, and the magnitude of resistance associated with feeding injury was less than that seen in a high-dose Bt crop. These first cases of resistance by western corn rootworm highlight the vulnerability of Bt maize to further evolution of resistance from this pest and, more broadly, point to the potential of insects to develop resistance rapidly when Bt crops do not achieve a high dose of Bt toxin.


Assuntos
Bacillus thuringiensis/química , Toxinas Bacterianas/farmacologia , Besouros/efeitos dos fármacos , Plantas Geneticamente Modificadas/microbiologia , Zea mays/microbiologia , Animais , Besouros/fisiologia , Plantas Geneticamente Modificadas/genética , Zea mays/genética
15.
J Econ Entomol ; 106(2): 622-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23786047

RESUMO

A 2 yr field study was conducted to determine how a blend of entomopathogens interacted with Bt maize to affect mortality of Diabrotica spp. (Coleoptera: Chrysomelidae), root injury to maize (Zea maize L.) and yield. The blend of entomopathogens included two entomopathogenic nematodes, Steinernema carpocapsae Weiser and Heterorhabditis bacteriophora Poinar, and one entomopathogenic fungus, Metarhizium brunneum (Metschnikoff) Sorokin. Bt maize (event DAS59122-7, which produces Bt toxin Cry34/35Ab1) decreased root injury and survival of western corn rootworm (Diabrotica virgifera virgifera LeConte) and northern corn rootworm (Diabrotica barberi Smith & Lawrence) but did not affect yield. During year 1 of the study, when rootworm abundance was high, entomopathogens in combination with Bt maize led to a significant reduction in root injury. In year 2 of the study, when rootworm abundance was lower, entomopathogens significantly decreased injury to non-Bt maize roots, but had no effect on Bt maize roots. Yield was significantly increased by the addition of entomopathogens to the soil. Entomopathogens did not decrease survival of corn rootworm species. The results suggest that soil-borne entomopathogens can complement Bt maize by protecting roots from feeding injury from corn rootworm when pest abundance is high, and can decrease root injury to non-Bt maize when rootworm abundance is low. In addition, this study also showed that the addition of entomopathogens to soil contributed to an overall increase in yield.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Besouros/efeitos dos fármacos , Endotoxinas/genética , Proteínas Hemolisinas/genética , Metarhizium/fisiologia , Rabditídios/fisiologia , Zea mays/genética , Análise de Variância , Animais , Proteínas de Bactérias/metabolismo , Besouros/crescimento & desenvolvimento , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Iowa , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Distribuição Aleatória , Estações do Ano , Especificidade da Espécie , Zea mays/crescimento & desenvolvimento
16.
J Econ Entomol ; 106(1): 168-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23448029

RESUMO

The western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) and the northern corn rootworm Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae) are major pests of corn (Zea mays L.). Historically, crop rotation has been an effective management strategy, but both species have adapted to crop rotation in the Midwest. For both species in eastern Iowa, we measured abundance and prevalence of rotation resistance using sticky traps and emergence cages in fields of corn and soybean (Glycine max L.). Based on currently available data, we calculated the economic thresholds for these pests at two Diabrotica spp. per trap per day in cornfields and 1.5 D. v. virgifera per trap per day in soybean fields. The economic injury level of rotation-resistant D. barberi was determined to be 3.5 adult insects per emergence cage per year. Peak abundance of rootworm adults in cornfields was below economic thresholds in the majority of fields sampled, suggesting that management of rootworm larvae in continuous cornfields may not always be necessary. Rotation-resistant D. barberi was found throughout eastern Iowa using emergence cages in first-year cornfields, however, the abundance was below levels expected to impose economic injury in 14 of 17 fields evaluated. The presence of rotation-resistant D. v. virgifera, as measured by the occurrence of this insect in soybean fields, occurred only in northeastern Iowa and was also below the economic threshold. These data suggests that crop rotation remains a viable pest management strategy in eastern Iowa.


Assuntos
Agricultura , Besouros , Animais , Controle de Insetos , Iowa , Densidade Demográfica
17.
GM Crops Food ; 3(3): 235-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22688688

RESUMO

Crops genetically engineered to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) manage many key insect pests while reducing the use of conventional insecticides. One of the primary pests targeted by Bt maize in the United States is the western corn rootworm, Diabrotica virgifera virgifera LeConte. Beginning in 2009, populations of western corn rootworm were identified in Iowa, USA that imposed severe root injury to Cry3Bb1 maize. Subsequent laboratory bioassays revealed that these populations were resistant to Cry3Bb1 maize, with survival on Cry3Bb1 maize that was three times higher than populations not associated with such injury. Here we report the results of research that began in 2010 when western corn rootworm were sampled from 14 fields in Iowa, half of which had root injury to Cry3Bb1 maize of greater than 1 node. Of these samples, sufficient eggs were collected to conduct bioassays on seven populations. Laboratory bioassays revealed that these 2010 populations had survival on Cry3Bb1 maize that was 11 times higher and significantly greater than that of control populations, which were brought into the laboratory prior to the commercialization of Bt maize for control of corn rootworm. Additionally, the developmental delays observed for control populations on Cry3Bb1 maize were greatly diminished for 2010 populations. All 2010 populations evaluated in bioassays came from fields with a history of continuous maize production and between 3 and 7 y of Cry3Bb1 maize cultivation. Resistance to Cry34/35Ab1 maize was not detected and there was no correlation between survival on Cry3Bb1 maize and Cry34/35Ab1 maize, suggesting a lack of cross resistance between these Bt toxins. Effectively dealing with the challenge of field-evolved resistance to Bt maize by western corn rootworm will require better adherence to the principles of integrated pest management.


Assuntos
Bacillus thuringiensis/genética , Besouros/fisiologia , Resistência a Inseticidas , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Zea mays/genética , Animais , Produtos Agrícolas , Endotoxinas/genética , Inseticidas , Iowa , Raízes de Plantas/genética , Dinâmica Populacional , Transgenes , Zea mays/parasitologia
18.
J Econ Entomol ; 105(2): 625-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22606835

RESUMO

The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn (Zea mays L.) in North America and has evolved resistance to crop rotation by ovipositing in alternate crops such as soybeans [Glycine max (L.) Merr.]. Through experiments with plants grown in the greenhouse and the field, we tested whether soybeans with resistance to the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), affected survival, fecundity, and consumption of soybean for D. v. virgifera. Soybean varieties tested included those types resistant to A. glycines (Rag1 and rag1/rag3) and a susceptible near isoline of the Rag1 variety. Females were provided with a diet of corn tissue for 4 d after which they were fed a diet of tissue from one of three soybean varieties for 4 d, starved for 4 d, or fed corn tissue. When fed greenhouse grown plants, strains differed significantly in survival and consumption, but consumption did not differ by variety of soybean. Diet treatment only affected fecundity; individuals fed corn continuously had greater fecundity than those individuals fed soybeans. In the experiment with plants grown in the field, leaf consumption differed among strains and individuals fed corn continuously had greater fecundity than the other treatments. Soybean varieties with Rag1 and rag1/rag3 resistance to A. glycines did not appear to affect the fitness of D. v. virgifera. Thus, planting of these A. glycines-resistant soybean varieties should not directly affect the spread of rotation-resistant D. v. virgifera.


Assuntos
Antibiose , Besouros/crescimento & desenvolvimento , Glycine max/genética , Animais , Afídeos/crescimento & desenvolvimento , Besouros/genética , Feminino , Fertilidade , Aptidão Genética , Iowa , Masculino , Glycine max/fisiologia
19.
PLoS One ; 6(7): e22629, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829470

RESUMO

BACKGROUND: Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). METHODOLOGY/PRINCIPAL FINDINGS: We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. CONCLUSIONS/SIGNIFICANCE: This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary.


Assuntos
Bacillus thuringiensis/patogenicidade , Besouros/microbiologia , Endotoxinas/toxicidade , Resistência a Inseticidas/genética , Controle Biológico de Vetores , Zea mays/microbiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Plantas Geneticamente Modificadas , Zea mays/genética , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA