Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 26(16): 3130-3143, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28535259

RESUMO

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the gene SACS, encoding the 520 kDa protein sacsin. Although sacsin's physiological role is largely unknown, its sequence domains suggest a molecular chaperone or protein quality control function. Consequences of its loss include neurofilament network abnormalities, specifically accumulation and bundling of perikaryal and dendritic neurofilaments. To investigate if loss of sacsin affects intermediate filaments more generally, the distribution of vimentin was analysed in ARSACS patient fibroblasts and in cells where sacsin expression was reduced. Abnormal perinuclear accumulation of vimentin filaments, which sometimes had a cage-like appearance, occurred in sacsin-deficient cells. Mitochondria and other organelles were displaced to the periphery of vimentin accumulations. Reorganization of the vimentin network occurs in vitro under stress conditions, including when misfolded proteins accumulate. In ARSACS patient fibroblasts HSP70, ubiquitin and the autophagy-lysosome pathway proteins Lamp2 and p62 relocalized to the area of the vimentin accumulation. There was no overall increase in ubiquitinated proteins, suggesting the ubiquitin-proteasome system was not impaired. There was evidence for alterations in the autophagy-lysosome pathway. Specifically, in ARSACS HDFs cellular levels of Lamp2 were elevated while levels of p62, which is degraded in autophagy, were decreased. Moreover, autophagic flux was increased in ARSACS HDFs under starvation conditions. These data show that loss of sacsin effects the organization of intermediate filaments in multiple cell types, which impacts the cellular distribution of other organelles and influences autophagic activity.


Assuntos
Proteínas de Choque Térmico/metabolismo , Filamentos Intermediários/metabolismo , Animais , Ataxia/genética , Técnicas de Cultura de Células , Citoesqueleto/metabolismo , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Espasticidade Muscular/genética , Espasticidade Muscular/metabolismo , Proteostase/genética , Proteostase/fisiologia , Proteínas de Ligação a RNA/metabolismo , Ataxias Espinocerebelares/congênito , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Vimentina/metabolismo
2.
Hum Mol Genet ; 25(15): 3232-3244, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288452

RESUMO

The neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is caused by loss of function of sacsin, a modular protein that is required for normal mitochondrial network organization. To further understand cellular consequences of loss of sacsin, we performed microarray analyses in sacsin knockdown cells and ARSACS patient fibroblasts. This identified altered transcript levels for oxidative phosphorylation and oxidative stress genes. These changes in mitochondrial gene networks were validated by quantitative reverse transcription PCR. Functional impairment of oxidative phosphorylation was then demonstrated by comparison of mitochondria bioenergetics through extracellular flux analyses. Moreover, staining with the mitochondrial-specific fluorescent probe MitoSox suggested increased levels of superoxide in patient cells with reduced levels of sacsin.Key to maintaining mitochondrial health is mitochondrial fission, which facilitates the dynamic exchange of mitochondrial components and separates damaged parts of the mitochondrial network for selective elimination by mitophagy. Fission is dependent on dynamin-related protein 1 (Drp1), which is recruited to prospective sites of division where it mediates scission. In sacsin knockdown cells and ARSACS fibroblasts, we observed a decreased incidence of mitochondrial associated Drp1 foci. This phenotype persists even when fission is induced by drug treatment. Mitochondrial-associated Drp1 foci are also smaller in sacsin knockdown cells and ARSACS fibroblasts. These data suggest a model for ARSACS where neurons with reduced levels of sacsin are compromised in their ability to recruit or retain Drp1 at the mitochondrial membrane leading to a decline in mitochondrial health, potentially through impaired mitochondrial quality control.


Assuntos
Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Espasticidade Muscular/metabolismo , Ataxias Espinocerebelares/congênito , Linhagem Celular Tumoral , Dinaminas , Feminino , Fibroblastos/patologia , GTP Fosfo-Hidrolases/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/patologia , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/genética , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia
3.
Subcell Biochem ; 78: 243-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25487025

RESUMO

Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Doenças Neurodegenerativas/metabolismo , Deficiências na Proteostase/metabolismo , Animais , Predisposição Genética para Doença , Proteínas de Choque Térmico HSP70/genética , Humanos , Doenças Neurodegenerativas/genética , Fenótipo , Agregados Proteicos , Agregação Patológica de Proteínas , Conformação Proteica , Dobramento de Proteína , Deficiências na Proteostase/genética , Transdução de Sinais
4.
J Biol Chem ; 289(7): 4244-61, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24338480

RESUMO

Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions.


Assuntos
Apolipoproteínas B/metabolismo , Colesterol/biossíntese , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Apolipoproteínas B/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Linhagem Celular , Colesterol/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Humanos , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Hipobetalipoproteinemias/patologia , Lipídeos/genética , Fígado/metabolismo , Fígado/patologia , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas de Transporte Vesicular/genética
5.
J Lipid Res ; 54(12): 3491-505, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24103848

RESUMO

The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3'UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis.


Assuntos
Tecido Adiposo/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Regulação da Expressão Gênica , Hiperlipidemia Familiar Combinada/genética , Células 3T3-L1 , Adipogenia/genética , Tecido Adiposo/patologia , Animais , Ciclo Celular/genética , Células HEK293 , Haplótipos , Humanos , Hiperlipidemia Familiar Combinada/patologia , Masculino , Camundongos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA