Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Neuroinformatics ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763990

RESUMO

Magnetic resonance imaging of the brain is a useful tool in both the clinic and research settings, aiding in the diagnosis and treatments of neurological disease and expanding our knowledge of the brain. However, there are many challenges inherent in managing and analyzing MRI data, due in large part to the heterogeneity of data acquisition. To address this, we have developed MRIO, the Magnetic Resonance Imaging Acquisition and Analysis Ontology. MRIO provides well-reasoned classes and logical axioms for the acquisition of several MRI acquisition types and well-known, peer-reviewed analysis software, facilitating the use of MRI data. These classes provide a common language for the neuroimaging research process and help standardize the organization and analysis of MRI data for reproducible datasets. We also provide queries for automated assignment of analyses for given MRI types. MRIO aids researchers in managing neuroimaging studies by helping organize and annotate MRI data and integrating with existing standards such as Digital Imaging and Communications in Medicine and the Brain Imaging Data Structure, enhancing reproducibility and interoperability. MRIO was constructed according to Open Biomedical Ontologies Foundry principles and has contributed several classes to the Ontology for Biomedical Investigations to help bridge neuroimaging data to other domains. MRIO addresses the need for a "common language" for MRI that can help manage the neuroimaging research, by enabling researchers to identify appropriate analyses for sets of scans and facilitating data organization and reporting.

2.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38617362

RESUMO

Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease statuses. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.

3.
J Dent ; 141: 104831, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190879

RESUMO

OBJECTIVE: Quantify the survival of posterior composite restorations (PCR) placed during the study period in permanent teeth in United States (US) general dental community practices and factors predictive of that survival. METHODS: A retrospective cohort study was conducted utilizing de-identified electronic dental record (EDR) data of patients who received a PCR in 99 general dentistry practices in the National Dental Practice-Based Research Network (Network). The final analyzed data set included 700,885 PCRs from 200,988 patients. Descriptive statistics and Kaplan Meier (product limit) estimator were performed to estimate the survival rate (defined as the PCR not receiving any subsequent treatment) after the first PCR was observed in the EDR during the study time. The Cox proportional hazards model was done to account for patient- and tooth-specific covariates. RESULTS: The overall median survival time was 13.3 years. The annual failure rates were 4.5-5.8 % for years 1-5; 5.3-5.7 %, 4.9-5.5 %, and 3.3-5.2 % for years 6-10, 11-15, and 16-20, respectively. The failure descriptions recorded for < 7 % failures were mostly caries (54 %) and broken or fractured tooth/restorations (23 %). The following variables significantly predicted PCR survival: number of surfaces that comprised the PCR; having at least one interproximal surface; tooth type; type of prior treatment received on the tooth; Network region; patient age and sex. Based on the magnitude of the multivariable estimates, no single factor predominated. CONCLUSIONS: This study of Network practices geographically distributed across the US observed PCR survival rates and predictive factors comparable to studies done in academic settings and outside the US. CLINICAL SIGNIFICANCE: Specific baseline factors significantly predict the survival of PCRs done in US community dental practices.


Assuntos
Cárie Dentária , Restauração Dentária Permanente , Humanos , Resinas Compostas , Estudos Retrospectivos , Falha de Restauração Dentária , Análise de Sobrevida , Cárie Dentária/terapia
4.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003583

RESUMO

T. forsythia is a subgingival periodontal bacterium constituting the subgingival pathogenic polymicrobial milieu during periodontitis (PD). miRNAs play a pivotal role in maintaining periodontal tissue homeostasis at the transcriptional, post-transcriptional, and epigenetic levels. The aim of this study was to characterize the global microRNAs (miRNA, miR) expression kinetics in 8- and 16-week-old T. forsythia-infected C57BL/6J mouse mandibles and to identify the miRNA bacterial biomarkers of disease process at specific time points. We examined the differential expression (DE) of miRNAs in mouse mandibles (n = 10) using high-throughput NanoString nCounter® miRNA expression panels, which provided significant advantages over specific candidate miRNA or pathway analyses. All the T. forsythia-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, along with a significant increase in alveolar bone resorption (ABR) (p < 0.0001). We performed a NanoString analysis of specific miRNA signatures, miRNA target pathways, and gene network analysis. A total of 115 miRNAs were DE in the mandible tissue during 8 and 16 weeks The T. forsythia infection, compared with sham infection, and the majority (99) of DE miRNAs were downregulated. nCounter miRNA expression kinetics identified 67 downregulated miRNAs (e.g., miR-375, miR-200c, miR-200b, miR-34b-5p, miR-141) during an 8-week infection, whereas 16 upregulated miRNAs (e.g., miR-1902, miR-let-7c, miR-146a) and 32 downregulated miRNAs (e.g., miR-2135, miR-720, miR-376c) were identified during a 16-week infection. Two miRNAs, miR-375 and miR-200c, were highly downregulated with >twofold change during an 8-week infection. Six miRNAs in the 8-week infection (miR-200b, miR-141, miR-205, miR-423-3p, miR-141-3p, miR-34a-5p) and two miRNAs in the 16-week infection (miR-27a-3p, miR-15a-5p) that were downregulated have also been reported in the gingival tissue and saliva of periodontitis patients. This preclinical in vivo study identified T. forsythia-specific miRNAs (miR-let-7c, miR-210, miR-146a, miR-423-5p, miR-24, miR-218, miR-26b, miR-23a-3p) and these miRs have also been reported in the gingival tissues and saliva of periodontitis patients. Further, several DE miRNAs that are significantly upregulated (e.g., miR-101b, miR-218, miR-127, miR-24) are also associated with many systemic diseases such as atherosclerosis, Alzheimer's disease, rheumatoid arthritis, osteoarthritis, diabetes, obesity, and several cancers. In addition to DE analysis, we utilized the XGBoost (eXtreme Gradient boost) and Random Forest machine learning (ML) algorithms to assess the impact that the number of miRNA copies has on predicting whether a mouse is infected. XGBoost found that miR-339-5p was most predictive for mice infection at 16 weeks. miR-592-5p was most predictive for mice infection at 8 weeks and also when the 8-week and 16-week results were grouped together. Random Forest predicted miR-592 as most predictive at 8 weeks as well as the combined 8-week and 16-week results, but miR-423-5p was most predictive at 16 weeks. In conclusion, the expression levels of miR-375 and miR-200c family differed significantly during disease process, and these miRNAs establishes a link between T. forsythia and development of periodontitis genesis, offering new insights regarding the pathobiology of this bacterium.


Assuntos
MicroRNAs , Periodontite , Humanos , Animais , Camundongos , Tannerella forsythia/genética , Perfilação da Expressão Gênica/métodos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Periodontite/genética
5.
Standards (Basel) ; 3(3): 316-340, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37873508

RESUMO

The translational research community, in general, and the Clinical and Translational Science Awards (CTSA) community, in particular, share the vision of repurposing EHRs for research that will improve the quality of clinical practice. Many members of these communities are also aware that electronic health records (EHRs) suffer limitations of data becoming poorly structured, biased, and unusable out of original context. This creates obstacles to the continuity of care, utility, quality improvement, and translational research. Analogous limitations to sharing objective data in other areas of the natural sciences have been successfully overcome by developing and using common ontologies. This White Paper presents the authors' rationale for the use of ontologies with computable semantics for the improvement of clinical data quality and EHR usability formulated for researchers with a stake in clinical and translational science and who are advocates for the use of information technology in medicine but at the same time are concerned by current major shortfalls. This White Paper outlines pitfalls, opportunities, and solutions and recommends increased investment in research and development of ontologies with computable semantics for a new generation of EHRs.

6.
Biodivers Data J ; 11: e112420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829294

RESUMO

The standardization of data, encompassing both primary and contextual information (metadata), plays a pivotal role in facilitating data (re-)use, integration, and knowledge generation. However, the biodiversity and omics communities, converging on omics biodiversity data, have historically developed and adopted their own distinct standards, hindering effective (meta)data integration and collaboration. In response to this challenge, the Task Group (TG) for Sustainable DwC-MIxS Interoperability was established. Convening experts from the Biodiversity Information Standards (TDWG) and the Genomic Standards Consortium (GSC) alongside external stakeholders, the TG aimed to promote sustainable interoperability between the Minimum Information about any (x) Sequence (MIxS) and Darwin Core (DwC) specifications. To achieve this goal, the TG utilized the Simple Standard for Sharing Ontology Mappings (SSSOM) to create a comprehensive mapping of DwC keys to MIxS keys. This mapping, combined with the development of the MIxS-DwC extension, enables the incorporation of MIxS core terms into DwC-compliant metadata records, facilitating seamless data exchange between MIxS and DwC user communities. Through the implementation of this translation layer, data produced in either MIxS- or DwC-compliant formats can now be efficiently brokered, breaking down silos and fostering closer collaboration between the biodiversity and omics communities. To ensure its sustainability and lasting impact, TDWG and GSC have both signed a Memorandum of Understanding (MoU) on creating a continuous model to synchronize their standards. These achievements mark a significant step forward in enhancing data sharing and utilization across domains, thereby unlocking new opportunities for scientific discovery and advancement.

7.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609265

RESUMO

Objective: Magnetic resonance imaging of the brain is a useful tool in both the clinic and research settings, aiding in the diagnosis and treatments of neurological disease and expanding our knowledge of the brain. However, there are many challenges inherent in managing and analyzing MRI data, due in large part to the heterogeneity of data acquisition. Materials and Methods: To address this, we have developed MRIO, the Magnetic Resonance Imaging Acquisition and Analysis Ontology. Results: MRIO provides well-reasoned classes and logical axioms for the acquisition of several MRI acquisition types and well-known, peer-reviewed analysis software, facilitating the use of MRI data. These classes provide a common language for the neuroimaging research process and help standardize the organization and analysis of MRI data for reproducible datasets. We also provide queries for automated assignment of analyses for given MRI types. Discussion: MRIO aids researchers in managing neuroimaging studies by helping organize and annotate MRI data and integrating with existing standards such as Digital Imaging and Communications in Medicine and the Brain Imaging Data Structure, enhancing reproducibility and interoperability. MRIO was constructed according to Open Biomedical Ontologies Foundry principals and has contributed several terms to the Ontology for Biomedical Investigations to help bridge neuroimaging data to other domains. Conclusion: MRIO addresses the need for a "common language" for MRI that can help manage the neuroimaging research, by enabling researchers to identify appropriate analyses for sets of scans and facilitating data organization and reporting.

8.
NPJ Syst Biol Appl ; 9(1): 29, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400474

RESUMO

Mathematical modeling of the emergent dynamics of gene regulatory networks (GRN) faces a double challenge of (a) dependence of model dynamics on parameters, and (b) lack of reliable experimentally determined parameters. In this paper we compare two complementary approaches for describing GRN dynamics across unknown parameters: (1) parameter sampling and resulting ensemble statistics used by RACIPE (RAndom CIrcuit PErturbation), and (2) use of rigorous analysis of combinatorial approximation of the ODE models by DSGRN (Dynamic Signatures Generated by Regulatory Networks). We find a very good agreement between RACIPE simulation and DSGRN predictions for four different 2- and 3-node networks typically observed in cellular decision making. This observation is remarkable since the DSGRN approach assumes that the Hill coefficients of the models are very high while RACIPE assumes the values in the range 1-6. Thus DSGRN parameter domains, explicitly defined by inequalities between systems parameters, are highly predictive of ODE model dynamics within a biologically reasonable range of parameters.


Assuntos
Redes Reguladoras de Genes , Modelos Teóricos , Simulação por Computador , Redes Reguladoras de Genes/genética
9.
FASEB J ; 37(3): e22777, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734881

RESUMO

The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.


Assuntos
Fator 9 de Crescimento de Fibroblastos , Tendões , Camundongos , Animais , Fator 9 de Crescimento de Fibroblastos/genética , Fator 9 de Crescimento de Fibroblastos/metabolismo , Tendões/metabolismo , Osso e Ossos , Desenvolvimento Ósseo/genética , Condrogênese
10.
J Biomed Semantics ; 14(1): 3, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36823605

RESUMO

BACKGROUND: Evaluating the impact of environmental exposures on organism health is a key goal of modern biomedicine and is critically important in an age of greater pollution and chemicals in our environment. Environmental health utilizes many different research methods and generates a variety of data types. However, to date, no comprehensive database represents the full spectrum of environmental health data. Due to a lack of interoperability between databases, tools for integrating these resources are needed. In this manuscript we present the Environmental Conditions, Treatments, and Exposures Ontology (ECTO), a species-agnostic ontology focused on exposure events that occur as a result of natural and experimental processes, such as diet, work, or research activities. ECTO is intended for use in harmonizing environmental health data resources to support cross-study integration and inference for mechanism discovery. METHODS AND FINDINGS: ECTO is an ontology designed for describing organismal exposures such as toxicological research, environmental variables, dietary features, and patient-reported data from surveys. ECTO utilizes the base model established within the Exposure Ontology (ExO). ECTO is developed using a combination of manual curation and Dead Simple OWL Design Patterns (DOSDP), and contains over 2700 environmental exposure terms, and incorporates chemical and environmental ontologies. ECTO is an Open Biological and Biomedical Ontology (OBO) Foundry ontology that is designed for interoperability, reuse, and axiomatization with other ontologies. ECTO terms have been utilized in axioms within the Mondo Disease Ontology to represent diseases caused or influenced by environmental factors, as well as for survey encoding for the Personalized Environment and Genes Study (PEGS). CONCLUSIONS: We constructed ECTO to meet Open Biological and Biomedical Ontology (OBO) Foundry principles to increase translation opportunities between environmental health and other areas of biology. ECTO has a growing community of contributors consisting of toxicologists, public health epidemiologists, and health care providers to provide the necessary expertise for areas that have been identified previously as gaps.


Assuntos
Ontologias Biológicas , Humanos , Bases de Dados Factuais
11.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499189

RESUMO

Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.


Assuntos
Histamina , Receptores Histamínicos H3 , Feminino , Animais , Masculino , Camundongos , Histamina/metabolismo , Serotonina/metabolismo , Receptores Histamínicos H3/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/metabolismo , Encéfalo/metabolismo
12.
J Biomed Semantics ; 13(1): 25, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271389

RESUMO

BACKGROUND: The current COVID-19 pandemic and the previous SARS/MERS outbreaks of 2003 and 2012 have resulted in a series of major global public health crises. We argue that in the interest of developing effective and safe vaccines and drugs and to better understand coronaviruses and associated disease mechenisms it is necessary to integrate the large and exponentially growing body of heterogeneous coronavirus data. Ontologies play an important role in standard-based knowledge and data representation, integration, sharing, and analysis. Accordingly, we initiated the development of the community-based Coronavirus Infectious Disease Ontology (CIDO) in early 2020. RESULTS: As an Open Biomedical Ontology (OBO) library ontology, CIDO is open source and interoperable with other existing OBO ontologies. CIDO is aligned with the Basic Formal Ontology and Viral Infectious Disease Ontology. CIDO has imported terms from over 30 OBO ontologies. For example, CIDO imports all SARS-CoV-2 protein terms from the Protein Ontology, COVID-19-related phenotype terms from the Human Phenotype Ontology, and over 100 COVID-19 terms for vaccines (both authorized and in clinical trial) from the Vaccine Ontology. CIDO systematically represents variants of SARS-CoV-2 viruses and over 300 amino acid substitutions therein, along with over 300 diagnostic kits and methods. CIDO also describes hundreds of host-coronavirus protein-protein interactions (PPIs) and the drugs that target proteins in these PPIs. CIDO has been used to model COVID-19 related phenomena in areas such as epidemiology. The scope of CIDO was evaluated by visual analysis supported by a summarization network method. CIDO has been used in various applications such as term standardization, inference, natural language processing (NLP) and clinical data integration. We have applied the amino acid variant knowledge present in CIDO to analyze differences between SARS-CoV-2 Delta and Omicron variants. CIDO's integrative host-coronavirus PPIs and drug-target knowledge has also been used to support drug repurposing for COVID-19 treatment. CONCLUSION: CIDO represents entities and relations in the domain of coronavirus diseases with a special focus on COVID-19. It supports shared knowledge representation, data and metadata standardization and integration, and has been used in a range of applications.


Assuntos
COVID-19 , Doenças Transmissíveis , Coronavirus , Vacinas , Humanos , SARS-CoV-2 , Pandemias , Aminoácidos , Tratamento Farmacológico da COVID-19
13.
Database (Oxford) ; 20222022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36208225

RESUMO

Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases, continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable interoperability. The Ontology Development Kit (ODK) provides a set of standardized, customizable and automatically executable workflows, and packages all required tooling in a single Docker image. In this paper, we provide an overview of how the ODK works, show how it is used in practice and describe how we envision it driving standardization efforts in our community. Database URL: https://github.com/INCATools/ontology-development-kit.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Metadados , Controle de Qualidade , Software , Fluxo de Trabalho
14.
Bull Math Biol ; 84(8): 89, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831627

RESUMO

A gene regulatory network summarizes the interactions between a set of genes and regulatory gene products. These interactions include transcriptional regulation, protein activity regulation, and regulation of the transport of proteins between cellular compartments. DSGRN is a network modeling approach that builds on traditions of discrete-time Boolean models and continuous-time switching system models. When all interactions are transcriptional, DSGRN uses a combinatorial approximation to describe the entire range of dynamics that is compatible with network structure. Here we present an extension of the DGSRN approach to transport regulation across a boundary between compartments, such as a cellular membrane. We illustrate our approach by searching a model of the p53-Mdm2 network for the potential to admit two experimentally observed distinct stable periodic cycles.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Regulação da Expressão Gênica , Conceitos Matemáticos , Modelos Biológicos
15.
Database (Oxford) ; 20222022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35616100

RESUMO

Despite progress in the development of standards for describing and exchanging scientific information, the lack of easy-to-use standards for mapping between different representations of the same or similar objects in different databases poses a major impediment to data integration and interoperability. Mappings often lack the metadata needed to be correctly interpreted and applied. For example, are two terms equivalent or merely related? Are they narrow or broad matches? Or are they associated in some other way? Such relationships between the mapped terms are often not documented, which leads to incorrect assumptions and makes them hard to use in scenarios that require a high degree of precision (such as diagnostics or risk prediction). Furthermore, the lack of descriptions of how mappings were done makes it hard to combine and reconcile mappings, particularly curated and automated ones. We have developed the Simple Standard for Sharing Ontological Mappings (SSSOM) which addresses these problems by: (i) Introducing a machine-readable and extensible vocabulary to describe metadata that makes imprecision, inaccuracy and incompleteness in mappings explicit. (ii) Defining an easy-to-use simple table-based format that can be integrated into existing data science pipelines without the need to parse or query ontologies, and that integrates seamlessly with Linked Data principles. (iii) Implementing open and community-driven collaborative workflows that are designed to evolve the standard continuously to address changing requirements and mapping practices. (iv) Providing reference tools and software libraries for working with the standard. In this paper, we present the SSSOM standard, describe several use cases in detail and survey some of the existing work on standardizing the exchange of mappings, with the goal of making mappings Findable, Accessible, Interoperable and Reusable (FAIR). The SSSOM specification can be found at http://w3id.org/sssom/spec. Database URL: http://w3id.org/sssom/spec.


Assuntos
Metadados , Web Semântica , Gerenciamento de Dados , Bases de Dados Factuais , Fluxo de Trabalho
16.
CEUR Workshop Proc ; 3073: 122-127, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37324543

RESUMO

Ontologies have emerged to become critical to support data and knowledge representation, standardization, integration, and analysis. The SARS-CoV-2 pandemic led to the rapid proliferation of COVID-19 data, as well as the development of many COVID-19 ontologies. In the interest of supporting data interoperability, we initiated a community-based effort to harmonize COVID-19 ontologies. Our effort involves the collaborative discussion among developers of seven COVID-19 related ontologies, and the merging of four ontologies. This effort demonstrates the feasibility of harmonizing these ontologies in an interoperable framework to support integrative representation and analysis of COVID-19 related data and knowledge.

17.
Database (Oxford) ; 20212021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34697637

RESUMO

Biological ontologies are used to organize, curate and interpret the vast quantities of data arising from biological experiments. While this works well when using a single ontology, integrating multiple ontologies can be problematic, as they are developed independently, which can lead to incompatibilities. The Open Biological and Biomedical Ontologies (OBO) Foundry was created to address this by facilitating the development, harmonization, application and sharing of ontologies, guided by a set of overarching principles. One challenge in reaching these goals was that the OBO principles were not originally encoded in a precise fashion, and interpretation was subjective. Here, we show how we have addressed this by formally encoding the OBO principles as operational rules and implementing a suite of automated validation checks and a dashboard for objectively evaluating each ontology's compliance with each principle. This entailed a substantial effort to curate metadata across all ontologies and to coordinate with individual stakeholders. We have applied these checks across the full OBO suite of ontologies, revealing areas where individual ontologies require changes to conform to our principles. Our work demonstrates how a sizable, federated community can be organized and evaluated on objective criteria that help improve overall quality and interoperability, which is vital for the sustenance of the OBO project and towards the overall goals of making data Findable, Accessible, Interoperable, and Reusable (FAIR). Database URL http://obofoundry.org/.


Assuntos
Ontologias Biológicas , Bases de Dados Factuais , Metadados
19.
mSystems ; 6(1)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622857

RESUMO

Microbiome samples are inherently defined by the environment in which they are found. Therefore, data that provide context and enable interpretation of measurements produced from biological samples, often referred to as metadata, are critical. Important contributions have been made in the development of community-driven metadata standards; however, these standards have not been uniformly embraced by the microbiome research community. To understand how these standards are being adopted, or the barriers to adoption, across research domains, institutions, and funding agencies, the National Microbiome Data Collaborative (NMDC) hosted a workshop in October 2019. This report provides a summary of discussions that took place throughout the workshop, as well as outcomes of the working groups initiated at the workshop.

20.
Front Bioinform ; 1: 826370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36303775

RESUMO

The nascent field of microbiome science is transitioning from a descriptive approach of cataloging taxa and functions present in an environment to applying multi-omics methods to investigate microbiome dynamics and function. A large number of new tools and algorithms have been designed and used for very specific purposes on samples collected by individual investigators or groups. While these developments have been quite instructive, the ability to compare microbiome data generated by many groups of researchers is impeded by the lack of standardized application of bioinformatics methods. Additionally, there are few examples of broad bioinformatics workflows that can process metagenome, metatranscriptome, metaproteome and metabolomic data at scale, and no central hub that allows processing, or provides varied omics data that are findable, accessible, interoperable and reusable (FAIR). Here, we review some of the challenges that exist in analyzing omics data within the microbiome research sphere, and provide context on how the National Microbiome Data Collaborative has adopted a standardized and open access approach to address such challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA