Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ecol Appl ; : e2981, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738945

RESUMO

Predicting how biological communities assemble in restored ecosystems can assist in conservation efforts, but most research has focused on plants, with relatively little attention paid to soil microbial organisms that plants interact with. Arbuscular mycorrhizal (AM) fungi are an ecologically significant functional group of soil microbes that form mutualistic symbioses with plants and could therefore respond positively to plant community restoration. To evaluate the effects of plant community restoration on AM fungi, we compared AM fungal abundance, species richness, and community composition of five annually cultivated, conventionally managed agricultural fields with paired adjacent retired agricultural fields that had undergone prairie restoration 5-9 years prior to sampling. We hypothesized that restoration stimulates AM fungal abundance and species richness, particularly for disturbance-sensitive taxa, and that gains of new taxa would not displace AM fungal species present prior to restoration due to legacy effects. AM fungal abundance was quantified by measuring soil spore density and root colonization. AM fungal species richness and community composition were determined in soils and plant roots using DNA high-throughput sequencing. Soil spore density was 2.3 times higher in restored prairies compared to agricultural fields, but AM fungal root colonization did not differ between land use types. AM fungal species richness was 2.7 and 1.4 times higher in restored prairies versus agricultural fields for soil and roots, respectively. The abundance of Glomeraceae, a disturbance-tolerant family, decreased by 25% from agricultural to restored prairie soils but did not differ in plant roots. The abundance of Claroideoglomeraceae and Diversisporaceae, both disturbance-sensitive families, was 4.6 and 3.2 times higher in restored prairie versus agricultural soils, respectively. Species turnover was higher than expected relative to a null model, indicating that AM fungal species were gained by replacement. Our findings demonstrate that restoration can promote a relatively rapid increase in the abundance and diversity of soil microbial communities that had been degraded by decades of intensive land use, and community compositional change can be predicted by the disturbance tolerance of soil microbial taxonomic and functional groups.

2.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38482770

RESUMO

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Assuntos
Microbiota , Solo , Solo/química , Fósforo/análise , Floresta Úmida , Bactérias/genética , Microbiota/genética , Minerais , Monoéster Fosfórico Hidrolases/genética , Microbiologia do Solo
3.
PLoS One ; 19(1): e0292731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38285680

RESUMO

Canine fecal microbiota profiling provides insight into host health and disease. Standardization of methods for fecal sample storage for microbiomics is currently inconclusive, however. This study investigated the effects of homogenization, the preservative RNAlater, room temperature exposure duration, and short-term storage in the fridge prior to freezing on the canine fecal microbiota profile. Within 15 minutes after voiding, samples were left non-homogenized or homogenized and aliquoted, then kept at room temperature (20-22°C) for 0.5, 4, 8, or 24 hours. Homogenized aliquots then had RNAlater added or not. Following room temperature exposure, all aliquots were stored in the fridge (4°C) for 24 hours prior to storing in the freezer (-20°C), or stored directly in the freezer. DNA extraction, PCR amplification, then sequencing were completed on all samples. Alpha diversity (diversity, evenness, and richness), and beta diversity (community membership and structure), and relative abundances of bacterial genera were compared between treatments. Homogenization and RNAlater minimized changes in the microbial communities over time, although minor changes in relative abundances occurred. Non-homogenized samples had more inter-sample variability and greater changes in beta diversity than homogenized samples. Storage of canine fecal samples in the fridge for 24 h prior to storage in the freezer had little effect on the fecal microbiota profile. Our findings suggest that if immediate analysis of fecal samples is not possible, samples should at least be homogenized to preserve the existing microbiota profile.


Assuntos
Microbiota , Animais , Cães , Fezes/microbiologia , Congelamento , Manejo de Espécimes/métodos , Bactérias/genética , Temperatura , RNA Ribossômico 16S/genética
4.
Plants (Basel) ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903877

RESUMO

Cover crops (CCs) were found to improve soil health by increasing plant diversity and ground cover. They may also improve water supply for cash crops by reducing evaporation and increasing soil water storage capacity. However, their influence on plant-associated microbial communities, including symbiotic arbuscular mycorrhizal fungi (AMF), is less well understood. In a corn field trial, we studied the response of AMF to a four-species winter CC, relative to a no-CC control, as well as to two contrasting water supply levels (i.e., drought and irrigated). We measured AMF colonization of corn roots and used Illumina MiSeq sequencing to study the composition and diversity of soil AMF communities at two depths (i.e., 0-10 and 10-20 cm). In this trial, AMF colonization was high (61-97%), and soil AMF communities were represented by 249 amplicon sequence variants (ASVs) belonging to 5 genera and 33 virtual taxa. Glomus, followed by Claroideoglomus and Diversispora (class Glomeromycetes), were the dominant genera. Our results showed interacting effects between CC treatments and water supply levels for most of the measured variables. The percentage of AMF colonization, arbuscules, and vesicles tended to be lower in irrigated than drought sites, with significant differences detected only under no-CC. Similarly, soil AMF phylogenetic composition was affected by water supply only in the no-CC treatment. Changes in the abundance of individual virtual taxa also showed strong interacting effects between CCs, irrigation, and sometimes soil depth, although CC effects were clearer than irrigation effects. An exception to these interactions was soil AMF evenness, which was higher in CC than no-CC, and higher under drought than irrigation. Soil AMF richness was not affected by the applied treatments. Our results suggest that CCs can affect the structure of soil AMF communities and modulate their response to water availability levels, although soil heterogeneity could influence the final outcome.

5.
Mol Ecol ; 32(12): 3257-3275, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36896778

RESUMO

Deforestation threatens the integrity of the Amazon biome and the ecosystem services it provides, including greenhouse gas mitigation. Forest-to-pasture conversion has been shown to alter the flux of methane gas (CH4 ) in Amazonian soils, driving a switch from acting as a sink to a source of atmospheric CH4 . This study aimed to better understand this phenomenon by investigating soil microbial metagenomes, focusing on the taxonomic and functional structure of methane-cycling communities. Metagenomic data from forest and pasture soils were combined with measurements of in situ CH4 fluxes and soil edaphic factors and analysed using multivariate statistical approaches. We found a significantly higher abundance and diversity of methanogens in pasture soils. As inferred by co-occurrence networks, these microorganisms seem to be less interconnected within the soil microbiota in pasture soils. Metabolic traits were also different between land uses, with increased hydrogenotrophic and methylotrophic pathways of methanogenesis in pasture soils. Land-use change also induced shifts in taxonomic and functional traits of methanotrophs, with bacteria harbouring genes encoding the soluble form of methane monooxygenase enzyme (sMMO) depleted in pasture soils. Redundancy analysis and multimodel inference revealed that the shift in methane-cycling communities was associated with high pH, organic matter, soil porosity and micronutrients in pasture soils. These results comprehensively characterize the effect of forest-to-pasture conversion on the microbial communities driving the methane-cycling microorganisms in the Amazon rainforest, which will contribute to the efforts to preserve this important biome.


Assuntos
Microbiota , Solo , Solo/química , Metano/metabolismo , Florestas , Genes Bacterianos , Microbiota/genética , Microbiologia do Solo
6.
Sci Total Environ ; 870: 161921, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36739023

RESUMO

Riparian buffer systems (RBS) are a common agroforestry practice that involves maintaining a forested boundary adjacent to water bodies to protect the aquatic ecosystems in agricultural landscapes. While RBS have potential for carbon sequestration, they also can be sources of methane emissions. Our study site at Washington Creek in Southern Ontario, includes a rehabilitated tree buffer (RH), a grassed buffer (GRB), an undisturbed deciduous forest (UNF), an undisturbed coniferous forest (CF), and an adjacent agricultural field (AGR). The objective of this study was to assess the diversity and activity of CH4 cycling microbial communities in soils sampled during hot moments of methane fluxes (July 04 and August 15). We used qPCR and high-throughput amplicon sequencing from both DNA and cDNA to target methanogen and methanotroph communities. Methanogens, including the archaeal genera Methanosaeta, Methanosarcina, Methanomassiliicoccus, and Methanoreggula, were abundant in all RBSs, but they were significantly more active in UNF soils, where CH4 emissions were highest. Methylocystis was the most prevalent taxon among methanotrophs in all the riparian sites, except for AGR soils where the methanotrophs community was composed primarily of members of rice paddy clusters (RPCs and RPC-1) and upland soil clusters (TUSC and USCα). The main factors influencing the composition and assembly of methane-cycling microbiomes were soil carbon and moisture content. We concluded that the differences in CH4 fluxes observed between RBSs were primarily caused by differences in the presence and activity of methanogens, which were influenced by total soil carbon and water content. Overall, this study emphasizes the importance of understanding the microbial drivers of CH4 fluxes in RBSs in order to maximize RBS environmental benefits.


Assuntos
Metano , Microbiota , Metano/análise , Archaea/genética , Solo/química , Carbono , Microbiologia do Solo
8.
Sci Rep ; 12(1): 9140, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650228

RESUMO

Sustainable agricultural practices such as cover crops (CCs) and residue retention are increasingly applied to counteract detrimental consequences on natural resources. Since agriculture affects soil properties partly via microbial communities, it is critical to understand how these respond to different management practices. Our study analyzed five CC treatments (oat, rye, radish, rye-radish mixture and no-CC) and two crop residue managements (retention/R+ or removal/R-) in an 8-year diverse horticultural crop rotation trial from ON, Canada. CC effects were small but stronger than those of residue management. Radish-based CCs tended to be the most beneficial for both microbial abundance and richness, yet detrimental for fungal evenness. CC species, in particular radish, also shaped fungal and, to a lesser extent, prokaryotic community composition. Crop residues modulated CC effects on bacterial abundance and fungal evenness (i.e., more sensitive in R- than R+), as well as microbial taxa. Several microbial structure features (e.g., composition, taxa within Actinobacteria, Firmicutes and Ascomycota), some affected by CCs, were correlated with early biomass production of the following tomato crop. Our study suggests that, whereas mid-term CC effects were small, they need to be better understood as they could be influencing cash crop productivity via plant-soil feedbacks.


Assuntos
Microbiota , Solanum lycopersicum , Bactérias , Biomassa , Produtos Agrícolas/microbiologia , Retroalimentação , Solanum lycopersicum/microbiologia , Solo/química , Microbiologia do Solo
9.
Sci Total Environ ; 821: 153420, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35092770

RESUMO

The integration of winter cover crop (WCC) in culture rotations promotes multiple ecosystem services, but concomitant microbial diversity and functioning responses in soil have received less attention. A field trial was established to test the hypothesis that enhanced crop diversity with the integration of WCC in a conventional maize-soy rotation promotes microbial diversity and the biological sink of H2 in soil, while reducing N2O emissions to the atmosphere. Vicia villosa (hairy vetch), Avena sativa (oat), and Raphanus sativus (Daikon radish) were cultivated alone or in combinations and flux measurements were performed throughout two subsequent growing seasons. Soil acted as a net sink for H2 and as a net source for CO2 and N2O. CO2 flux was the most sensitive to WCC whereas a significant spatial variation was observed for H2 flux with soil uptake rates observed in the most productive area two-fold greater than the baseline level. Sequencing and quantification of taxonomic and functional genes were integrated to explain variation in trace gas fluxes with compositional changes in soil microbial communities. Fungal communities were the most sensitive to WCC, but neither community abundance nor beta diversity were found to be indicative of fluxes. The alpha diversity of taxonomic and functional genes, expressed as the number of effective species, was integrated into composite variables extracted from multivariate analyses. Only the composite variable computed with the inverse Simpson's index displayed a reproducible pattern throughout both growing seasons, with functional genes and bacterial 16S rRNA gene defining the two most contrasting gradients. The composite variable was decoupled from WCC treatment and explained 19-20% spatial variation of H2 fluxes. The coupling of composite alpha diversity metrics derived from multiple genes with soil processes warrants further investigations to implement novel indicators of soil health in response to changing management practices at the local scale.


Assuntos
Dióxido de Carbono , Microbiota , Dióxido de Carbono/análise , Óxido Nitroso/análise , RNA Ribossômico 16S , Estações do Ano , Solo
10.
J Environ Qual ; 51(1): 33-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34693532

RESUMO

Restoration of agricultural riparian buffers with trees (agroforestry) provides an elegant solution to enhance carbon storage while also augmenting local biodiversity. Yet the scope and role of riparian plant community diversity in key soil dynamics remain unresolved. Operationalizing riparian age (young [<10 yr] and mature [>30 yr] since establishment] and forest stand type (coniferous and deciduous dominant) to capture the potential extent of plant diversity, we measured plant functional trait diversity and community weighted mean trait values, microbial composition, abiotic soil conditions, and rates of soil CO2 efflux (mg CO2 -C m-2 h-1 ). We used piecewise structural equation modeling (SEM) to further refine the role of biotic indices (leaf, root, and microbial characteristics), and abiotic factors (soil physio-chemical metrics) on soil C cycling processes in riparian systems. We found significantly lower rates of CO2 efflux (F = 8.47; p < .01) over one growing season and higher total soil C (F = 3.46; p = .03) in mature buffers compared with young buffers. Using SEM, we describe influences on soil C content (marginal r2  = 61) and soil CO2 efflux (marginal r2  = 53). Within young buffers, soil C content was significantly predicted by fungal/bacterial ratio and root length density, whereas in mature buffers, tree leaf characteristics were associated with soil C content. Soil CO2 efflux was predicted by soil moisture, soil carbon content, and herbaceous root characteristics. Evidently, leaf and root functional traits in combination with broad soil parameters significantly describe soil C dynamics in the field; however, significant pathways are not the same throughout the life cycle of a riparian agroforest.


Assuntos
Carbono , Solo , Florestas , Plantas , Árvores
11.
Front Plant Sci ; 12: 681113, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305979

RESUMO

Predicting respiration from roots and soil microbes is important in agricultural landscapes where net flux of carbon from the soil to the atmosphere is of large concern. Yet, in riparian agroecosystems that buffer aquatic environments from agricultural fields, little is known on the differential contribution of CO2 sources nor the systematic patterns in root and microbial communities that relate to these emissions. We deployed a field-based root exclusion experiment to measure heterotrophic and autotrophic-rhizospheric respiration across riparian buffer types in an agricultural landscape in southern Ontario, Canada. We paired bi-weekly measurements of in-field CO2 flux with analysis of soil properties and fine root functional traits. We quantified soil microbial community structure using qPCR to estimate bacterial and fungal abundance and characterized microbial diversity using high-throughput sequencing. Mean daytime total soil respiration rates in the growing season were 186.1 ± 26.7, 188.7 ± 23.0, 278.6 ± 30.0, and 503.4 ± 31.3 mg CO2-C m-2 h-1 in remnant coniferous and mixed forest, and rehabilitated forest and grass buffers, respectively. Contributions of autotrophic-rhizospheric respiration to total soil CO2 fluxes ranged widely between 14 and 63% across the buffers. Covariation in root traits aligned roots of higher specific root length and nitrogen content with higher specific root respiration rates, while microbial abundance in rhizosphere soil coorindated with roots that were thicker in diameter and higher in carbon to nitrogen ratio. Variation in autotrophic-rhizospheric respiration on a soil area basis was explained by soil temperature, fine root length density, and covariation in root traits. Heterotrophic respiration was strongly explained by soil moisture, temperature, and soil carbon, while multiple factor analysis revealed a positive correlation with soil microbial diversity. This is a first in-field study to quantify root and soil respiration in relation to trade-offs in root trait expression and to determine interactions between root traits and soil microbial community structure to predict soil respiration.

12.
Sci Total Environ ; 788: 147955, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134361

RESUMO

Greenhouse gas sampling from agricultural fields is laborious and time-consuming. Soil and topographical heterogeneity cause spatiotemporal variations, making nitrous oxide (N2O) estimation and management a challenge. Identification of representative monitoring locations, hotspots, and coldspots could facilitate the mitigation of agricultural N2O emissions. The objective of this study was to identify and characterize representative monitoring locations, hotspots, and coldspots of N2O emissions in agricultural fields (Baggs farm; BF and Research North farm; RN) in Cambridge, Ontario, Canada, under humid continental climate. Soil in both fields was classified as Orthic Melanic Brunisol, with some areas categorized as Gleyed Brunisolic Gray Brown Luvisol and Orthic Humic Gleysol. In total, 28 sampling points were selected following conditional Latin hypercube design using topographical parameters (digital elevation, slope, topographical wetness index, and Pennock landform classification). Gas samples were collected over a two-year crop rotation with corn (2019) and soybean (2020). Additional sampling was conducted at BF at spring thaw (2020). Time stability analysis using mean relative difference (MRD) and standard deviation of mean relative difference (SDRD) was performed to test the hypothesis that "simultaneous analysis of spatiotemporal variations in N2O emissions could help to identify and characterize representative monitoring locations, hotspots, coldspots and areas with few hot and cold moments. Most of the hotspots were located at shoulder positions, coldspots, and cold moments at backslope, and representative monitoring points were located at leveled positions or localized depressions. Time stability analysis coupled with multivariate groping analysis supported our hypothesis and helped successfully identify hotspots, coldspots, and representative locations based on landform classification with few exceptions. However, inclusion of additional topographical (curvature, contributing area, aspect) and morphological parameters (texture, thickness of soil horizon, depth to bedrock, and water table) are suggested for consideration in future research to manage variable-rate fertilizer application and mitigate N2O hotspots at landscape level.

13.
PLoS One ; 16(6): e0252881, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111183

RESUMO

Liquid manure (slurry) from livestock releases methane (CH4) that contributes significantly to global warming. Existing models for slurry CH4 production-used for mitigation and inventories-include effects of organic matter loading, temperature, and retention time but cannot predict important effects of management, or adequately capture essential temperature-driven dynamics. Here we present a new model that includes multiple methanogenic groups whose relative abundance shifts in response to changes in temperature or other environmental conditions. By default, the temperature responses of five groups correspond to those of four methanogenic species and one uncultured methanogen, although any number of groups could be defined. We argue that this simple mechanistic approach is able to describe both short- and long-term responses to temperature where other existing approaches fall short. The model is available in the open-source R package ABM (https://github.com/sashahafner/ABM) as a single flexible function that can include effects of slurry management (e.g., removal frequency and treatment methods) and changes in environmental conditions over time. Model simulations suggest that the reduction of CH4 emission by frequent emptying of slurry pits is due to washout of active methanogens. Application of the model to represent a full-scale slurry storage tank showed it can reproduce important trends, including a delayed response to temperature changes. However, the magnitude of predicted emission is uncertain, primarily as a result of sensitivity to the hydrolysis rate constant, due to a wide range in reported values. Results indicated that with additional work-particularly on the magnitude of hydrolysis rate-the model could be a tool for estimation of CH4 emissions for inventories.


Assuntos
Monitoramento Ambiental/métodos , Esterco/microbiologia , Metano/análise , Animais , Aquecimento Global , Gado , Modelos Biológicos , Eliminação de Resíduos Líquidos
14.
J Environ Qual ; 50(4): 817-835, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021608

RESUMO

National inventories of methane (CH4 ) emission from manure management are based on guidelines from the Intergovernmental Panel on Climate Change using country-specific emission factors. These calculations must be simple and, consequently, the effects of management practices and environmental conditions are only crudely represented in the calculations. The intention of this review is to develop a detailed understanding necessary for developing accurate models for calculating CH4 emission from liquid manure, with particular focus on the microbiological conversion of organic matter to CH4 . Themes discussed are (a) the liquid manure environment; (b) methane production processes from a modeling perspective; (c) development and adaptation of methanogenic communities; (d) mass and electron conservation; (e) steps limiting CH4 production; (f) inhibition of methanogens; (g) temperature effects on CH4 production; and (h) limits of existing estimation approaches. We conclude that a model must include calculation of microbial response to variations in manure temperature, substrate availability and age, and management system, because these variables substantially affect CH4 production. Methane production can be reduced by manipulating key variables through management procedures, and the effects may be taken into account by including a microbial component in the model. When developing new calculation procedures, it is important to include reasonably accurate algorithms of microbial adaptation. This review presents concepts for these calculations and ideas for how these may be carried out. A need for better quantification of hydrolysis kinetics is identified, and the importance of short- and long-term microbial adaptation is highlighted.


Assuntos
Euryarchaeota , Esterco , Animais , Metano , Temperatura
15.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33609120

RESUMO

The Haast chronosequence in New Zealand is an ∼6500-year dune formation series, characterized by rapid podzol development, phosphorus (P) depletion and a decline in aboveground biomass. We examined bacterial and fungal community composition within mineral soil fractions using amplicon-based high-throughput sequencing (Illumina MiSeq). We targeted bacterial non-specific acid (class A, phoN/phoC) and alkaline (phoD) phosphomonoesterase genes and quantified specific genes and transcripts using real-time PCR. Soil bacterial diversity was greatest after 4000 years of ecosystem development and associated with an increased richness of phylotypes and a significant decline in previously dominant taxa (Firmicutes and Proteobacteria). Soil fungal communities transitioned from predominantly Basidiomycota to Ascomycota along the chronosequence and were most diverse in 290- to 392-year-old soils, coinciding with maximum tree basal area and organic P accumulation. The Bacteria:Fungi ratio decreased amid a competitive and interconnected soil community as determined by network analysis. Overall, soil microbial communities were associated with soil changes and declining P throughout pedogenesis and ecosystem succession. We identified an increased dependence on organic P mineralization, as found by the profiled acid phosphatase genes, soil acid phosphatase activity and function inference from predicted metagenomes (PICRUSt2).


Assuntos
Microbiota , Solo , Nova Zelândia , Fósforo/análise , Microbiologia do Solo
16.
J Sci Food Agric ; 101(12): 5056-5066, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570760

RESUMO

BACKGROUND: The conversion of arable land to grassland and/or forested land is a common strategy of restoration because the development of plant communities can inhibit the erosion of soil, increase biodiversity and improve associated ecosystem services. The vertical profiles of microbial communities, however, have not been well characterized and their variability after land conversion is not well understood. We assessed the effects of the conversion of arable land (AL) to grassland (GL) and forested land (FL) on bacterial communities as old as 29 years in 0-200-cm profiles of a Chinese Mollisol. RESULTS: The soil in AL has been a stable ecosystem and changes in the assembly of soil microbiomes tended to be larger in the topsoil. The soil properties and microbial biodiversity of arable land were larger following revegetation and reforestation. The conversion caused a more complex coupling among microbes, and negative interactions and average connectivity were stronger in the 0-20-cm layers in GL and in the 20-60-cm layers in FL. The land use dramatically influenced the assembly of the microbial communities more in GL than AL and FL. The bacterial diversity was an important component of soil multinutrient cycling in the profiles and microbial functions were not as affected by changes in land use. CONCLUSION: The spatial variation of the microbiomes provided critical information on below-ground soil ecology and the ability of the soil to provide crucial ecosystem services. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Conservação dos Recursos Naturais , Ecossistema , Florestas , Pradaria , Solo/química
17.
Int J Phytoremediation ; 23(8): 846-856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33397125

RESUMO

Improved knowledge of the ecology of contaminant-degrading organisms is paramount for effective assessment and remediation of aromatic hydrocarbon-impacted sites. DNA stable isotope probing was used herein to identify autochthonous degraders in rhizosphere soil from a hybrid poplar phytoremediation system incubated under semi-field-simulated conditions. High-throughput sequencing of bacterial 16S rRNA and fungal internal transcribed spacer (ITS) rRNA genes in metagenomic samples separated according to nucleic acid buoyant density was used to identify putative toluene degraders. Degrader bacteria were found mainly within the Actinobacteria and Proteobacteria phyla and classified predominantly as Cupriavidus, Rhodococcus, Luteimonas, Burkholderiaceae, Azoarcus, Cellulomonadaceae, and Pseudomonas organisms. Purpureocillium lilacinum and Mortierella alpina fungi were also found to assimilate toluene, while several strains of the fungal poplar endophyte Mortierella elongatus were indirectly implicated as potential degraders. Finally, PICRUSt2 predictive taxonomic functional modeling of 16S rRNA genes was performed to validate successful isolation of stable isotope-labeled DNA in density-resolved samples. Four unique sequences, classified within the Bdellovibrionaceae, Intrasporangiaceae, or Chitinophagaceae families, or within the Sphingobacteriales order were absent from PICRUSt2-generated models and represent potentially novel putative toluene-degrading species. This study illustrates the power of combining stable isotope amendment with advanced metagenomic and bioinformatic techniques to link biodegradation activity with unisolated microorganisms. Novelty statement: This study used emerging molecular biological techniques to identify known and new organisms implicated in aromatic hydrocarbon biodegradation from a field-scale phytoremediation system, including organisms with phyto-specific relevance and having potential for downstream applications (amendment or monitoring) in future and existing systems. Additional novelty in this study comes from the use of taxonomic functional modeling approaches for validation of stable isotope probing techniques. This study provides a basis for expanding existing reference databases of known aromatic hydrocarbon degraders from field-applicable sources and offers technological improvements for future site assessment and management purposes.


Assuntos
Rizosfera , Solo , Biodegradação Ambiental , Fungos/genética , Hypocreales , Isótopos , Mortierella , RNA Ribossômico 16S/genética , Microbiologia do Solo , Tolueno
18.
Ecotoxicol Environ Saf ; 207: 111222, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890950

RESUMO

Sulfometuron-methyl is a broad-spectrum herbicide, used throughout Brazil; however, its environmental impacts in biochar (BC) amended soils is not fully understood. Biochar is known to enhance soil quality but can also have undesired effects such as altering the bioavailability and behavior of herbicides. Microbial communities can degrade herbicides such as sulfometuron-methyl in soils; however, they are known to be affected by BC. Therefore, it is important to understand the tripartite interaction between these factors. This research aimed to evaluate the sorption-desorption and biodegradation of sulfometuron-methyl in Amazonian soils amended with BC, and to assess the effects of the interactions between BC and sulfometuron-methyl on soil bacterial communities. Soil samples were collected from field plots amended with BC at three doses (0, 40 and 80 t ha-1) applied ten years ago. The herbicide sorption and desorption were evaluated using a batch equilibrium method. Mineralization and biodegradation studies were conducted in microcosms incubated with 14C-sulfometuron-methyl for 80 days. Systematic soil sampling, followed by DNA extraction, quantification (qPCR) and 16S rRNA amplicon sequencing were performed. The presence of BC increased the sorption of the herbicide to the soil by 11% (BC40) and 16% (BC80) compared to unamended soil. The presence of BC also affected the degradation of 14C-sulfometuron-methyl, reducing the mineralization rate and increasing the degradation half-life times (DT50) from 36.67 days in unamended soil to 52.11 and 55.45 days in BC40 and BC80 soils, respectively. The herbicide application altered the bacterial communities, affecting abundance and richness, and changing the taxonomic diversity (i.e., some taxa were promoted and other inhibited). A tripartite interaction was found between BC, the herbicide and soil bacterial communities, suggesting that it is important to consider the environmental impact of soil applied herbicides in biochar amended soils.


Assuntos
Biodegradação Ambiental , Herbicidas/análise , Poluentes do Solo/análise , Compostos de Sulfonilureia/análise , Adsorção , Bactérias/metabolismo , Disponibilidade Biológica , Brasil , Carvão Vegetal , RNA Ribossômico 16S/metabolismo , Solo
19.
Environ Technol ; 42(18): 2797-2804, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31920167

RESUMO

Acidification with sulphuric acid and cleaning residual manure in tanks are promising practices for reducing methane (CH4), which is a potent greenhouse gas. To date, no data are available on CH4 reductions from acidifying only residual manure (rather than all manure). Moreover, long-term effects of manure acidification (i.e. inoculating ability of previously acidified residual manure in the subsequent storages) are not known. To address these gaps, fresh manure (FM; 150 mL) combined with treated or untreated inoculum (30 mL) were anaerobically incubated at 17°C, 20°C, and 23°C for 116 d. Acidified treatments, regardless of location of acid addition, reduced CH4 production by 81% at 17°C, 78% at 20°C, and 19% at 23°C compared to the control (untreated FM and untreated inoculum). To test long-term acidification effects, FM was inoculated with manure that had been acidified 6-months prior. This created comparable CH4 production to FM with no inoculum and reduced CH4 production by 99% at 17°C and 20°C, and 49% at 23°C compared to the control. Results indicate that residual slurries of acidified manure become poor inoculants in subsequent storage, hence manure acidification has a long-term treatment effect in reducing CH4 production. This could reduce how often acidification is needed in dairy manure tanks and also increasing its cost-effectiveness for farmers.


Assuntos
Gases de Efeito Estufa , Esterco , Concentração de Íons de Hidrogênio , Esterco/análise , Metano/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA