Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Physiol Rep ; 10(10): e15308, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591811

RESUMO

Exercise-based cardiac rehabilitation leads to improvements in cardiovascular function in individuals with coronary artery disease. The cardiac effects of coronary artery disease (CAD) can be quantified using clinical echocardiographic measures, such as ejection fraction (EF). Measures of cardiovascular function typically only used in research settings can provide additional information and maybe more sensitive indices to assess changes after exercise-based cardiac rehabilitation. These additional measures include endothelial function (measured by flow-mediated dilation), left ventricular twist, myocardial performance index, and global longitudinal strain. To investigate the cardiovascular response to 12 week of either traditional moderate-intensity (TRAD) or stair climbing-based high-intensity interval (STAIR) exercise-based cardiac rehabilitation using both clinical and additional measures of cardiovascular function in individuals with CAD. Measurements were made at baseline (BL) and after supervised (4wk) and unsupervised (12 week) of training. This study was registered as a clinical trial at clinicaltrials.gov (NCT03235674). Participants were randomized into either TRAD (n = 9, 8M/1F) and STAIR (n = 9, 8M/1F). There was a training-associated increase in one component of left ventricular twist: Cardiac apical rotation (TRAD: BL: 5.6 ± 3.3º, 4 week: 8.0 ± 3.9º, 12 week: 6.2 ± 5.1º and STAIR: BL: 5.1 ± 3.6º, 4 week: 7.4 ± 3.9º, 12 week: 7.8 ± 2.8º, p (time) = 0.03, η2  = 0.20; main effect) and post-hoc analysis revealed a difference between BL and 4 week (p = 0.02). There were no changes in any other clinical or additional measures of cardiovascular function. The small increase in cardiac apical rotation observed after 4 weeks of training may indicate an early change in cardiac function. A larger overall training stimulus may be needed to elicit other cardiovascular function changes.


Assuntos
Reabilitação Cardíaca , Doença da Artéria Coronariana , Treinamento Intervalado de Alta Intensidade , Subida de Escada , Terapia por Exercício , Humanos
2.
Front Bioeng Biotechnol ; 9: 643453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307316

RESUMO

Due to the high individual differences in the anatomy and pathophysiology of patients, planning individualized treatment requires patient-specific diagnosis. Indeed, hemodynamic quantification can be immensely valuable for accurate diagnosis, however, we still lack precise diagnostic methods for numerous cardiovascular diseases including complex (and mixed) valvular, vascular, and ventricular interactions (C3VI) which is a complicated situation made even more challenging in the face of other cardiovascular pathologies. Transcatheter aortic valve replacement (TAVR) is a new less invasive intervention and is a growing alternative for patients with aortic stenosis. In a recent paper, we developed a non-invasive and Doppler-based diagnostic and monitoring computational mechanics framework for C3VI, called C3VI-DE that uses input parameters measured reliably using Doppler echocardiography. In the present work, we have developed another computational-mechanics framework for C3VI (called C3VI-CT). C3VI-CT uses the same lumped-parameter model core as C3VI-DE but its input parameters are measured using computed tomography and a sphygmomanometer. Both frameworks can quantify: (1) global hemodynamics (metrics of cardiac function); (2) local hemodynamics (metrics of circulatory function). We compared accuracy of the results obtained using C3VI-DE and C3VI-CT against catheterization data (gold standard) using a C3VI dataset (N = 49) for patients with C3VI who undergo TAVR in both pre and post-TAVR with a high variability. Because of the dataset variability and the broad range of diseases that it covers, it enables determining which framework can yield the most accurate results. In contrast with C3VI-CT, C3VI-DE tracks both the cardiac and vascular status and is in great agreement with cardiac catheter data.

3.
Front Sports Act Living ; 3: 630912, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665614

RESUMO

Background: Cardiac rehabilitation exercise reduces the risk of secondary cardiovascular disease. Interval training is a time-efficient alternative to traditional cardiac rehabilitation exercise and stair climbing is an accessible means. We aimed to assess the effectiveness of a high-intensity interval stair climbing intervention on improving cardiorespiratory fitness ( V ˙ O 2 peak ) compared to standard cardiac rehabilitation care. Methods: Twenty participants with coronary artery disease (61 ± 7 years, 18 males, two females) were randomly assigned to either traditional moderate-intensity exercise (TRAD) or high-intensity interval stair climbing (STAIR). V ˙ O 2 peak was assessed at baseline, following 4 weeks of six supervised exercise sessions and after 8 weeks of ~24 unsupervised exercise sessions. TRAD involved a minimum of 30 min at 60-80%HRpeak, and STAIR consisted of three bouts of six flights of 12 stairs at a self-selected vigorous intensity (~90 s/bout) separated by recovery periods of walking (~90 s). This study was registered as a clinical trial at clinicaltrials.gov (NCT03235674). Results: Two participants could not complete the trial due to the time commitment of the testing visits, leaving n = 9 in each group who completed the interventions without any adverse events. V ˙ O 2 peak increased after supervised and unsupervised training in comparison to baseline for both TRAD [baseline: 22.9 ± 2.5, 4 weeks (supervised): 25.3 ± 4.4, and 12 weeks (unsupervised): 26.5 ± 4.8 mL/kg/min] and STAIR [baseline: 21.4 ± 4.5, 4 weeks (supervised): 23.4 ± 5.6, and 12 weeks (unsupervised): 25 ± 6.2 mL/kg/min; p (time) = 0.03]. During the first 4 weeks of training (supervised) the STAIR vs. TRAD group had a higher %HRpeak (101 ± 1 vs. 89 ± 1%; p ≤ 0.001), across a shorter total exercise time (7.1 ± 0.1 vs. 36.7 ± 1.1 min; p = 0.009). During the subsequent 8 weeks of unsupervised training, %HRpeak was not different (87 ± 8 vs. 96 ± 8%; p = 0.055, mean ± SD) between groups, however, the STAIR group continued to exercise for less time per session (10.0 ± 3.2 vs. 24.2 ± 17.0 min; p = 0.036). Conclusions: Both brief, vigorous stair climbing, and traditional moderate-intensity exercise are effective in increasing V ˙ O 2 peak , in cardiac rehabilitation exercise programmes.

4.
Am J Physiol Heart Circ Physiol ; 320(3): H1136-H1155, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449851

RESUMO

Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum. Therefore, the purpose of this review was to examine the impact of the 24-h movement spectrum, specifically physical activity (aerobic and resistance training), sedentary behavior, and sleep, on cardiovascular and cerebrovascular outcomes in older adults, with a focus on recent evidence (<10 yr) and sex-based considerations. The review identifies that both aerobic training and being physically active (compared with sedentary) are associated with improvements in endothelial function, arterial stiffness, and cerebrovascular function. Additionally, there is evidence of sex-based differences in endothelial function: a blunted improvement in aerobic training in postmenopausal women compared with men. While minimal research has been conducted in older adults, resistance training does not appear to influence arterial stiffness. Poor sleep quantity or quality are associated with both impaired endothelial function and increased arterial stiffness. Finally, the review highlights mechanistic pathways involved in the regulation of vascular and cerebrovascular function, specifically the balance between pro- and antiatherogenic factors, which mediate the relationship between the 24-h movement spectrum and vascular outcomes. Finally, this review proposes future research directions: examining the role of duration and intensity of training, combining aerobic and resistance training, and exploration of sex-based differences in cardiovascular and cerebrovascular outcomes.


Assuntos
Ciclos de Atividade , Envelhecimento , Doenças Cardiovasculares/prevenção & controle , Remodelação Vascular , Fatores Etários , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/fisiopatologia , Transtornos Cerebrovasculares/prevenção & controle , Feminino , Nível de Saúde , Estilo de Vida Saudável , Humanos , Masculino , Fatores de Proteção , Treinamento Resistido , Medição de Risco , Fatores de Risco , Comportamento de Redução do Risco , Comportamento Sedentário , Fatores Sexuais , Sono , Fatores de Tempo
5.
Med Sci Sports Exerc ; 53(6): 1114-1124, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33394901

RESUMO

PURPOSE: There is a lack of knowledge as to how different exercise-based cardiac rehabilitation programming affects skeletal muscle adaptations in coronary artery disease (CAD) patients. We first characterized the skeletal muscle from adults with CAD compared with a group of age- and sex-matched healthy adults. We then determined the effects of a traditional moderate-intensity continuous exercise program (TRAD) or a stair climbing-based high-intensity interval training program (STAIR) on skeletal muscle metabolism in CAD. METHODS: Sixteen adults (n = 16, 61 ± 7 yr), who had undergone recent treatment for CAD, were randomized to perform (3 d·wk-1) either TRAD (n = 7, 30 min at 60%-80% of peak heart rate) or STAIR (n = 9, 3 × 6 flights) for 12 wk. Muscle biopsies were collected at baseline in both CAD and healthy controls (n = 9), and at 4 and 12 wk after exercise training in CAD patients undertaking TRAD or STAIR. RESULTS: We found that CAD had a lower capillary-to-fiber ratio (C/Fi, 35% ± 25%, P = 0.06) and capillary-to-fiber perimeter exchange (CFPE) index (23% ± 29%, P = 0.034) in Type II fibers compared with healthy controls. However, 12 wk of cardiac rehabilitation with either TRAD or STAIR increased C/Fi (Type II, 23% ± 14%, P < 0.001) and CFPE (Type I, 10% ± 23%, P < 0.01; Type II, 18% ± 22%, P = 0.002). CONCLUSION: Cardiac rehabilitation via TRAD or STAIR exercise training improved the compromised skeletal muscle microvascular phenotype observed in CAD patients.


Assuntos
Reabilitação Cardíaca/métodos , Doença da Artéria Coronariana/reabilitação , Treinamento Intervalado de Alta Intensidade/métodos , Músculo Esquelético/fisiologia , Subida de Escada/fisiologia , Adaptação Fisiológica , Idoso , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/cirurgia , Feminino , Humanos , Masculino , Microcirculação , Pessoa de Meia-Idade , Proteínas Mitocondriais/sangue , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/sangue , Fosforilação , Fator A de Crescimento do Endotélio Vascular/sangue
6.
Am J Physiol Heart Circ Physiol ; 319(6): H1327-H1337, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064553

RESUMO

Fluctuations in endogenous hormones estrogen and progesterone during the menstrual cycle may offer vasoprotection for endothelial and smooth muscle (VSM) function. While numerous studies have been published, the results are conflicting, leaving our understanding of the impact of the menstrual cycle on vascular function unclear. The purpose of this systematic review and meta-analysis was to consolidate available research exploring the role of the menstrual cycle on peripheral vascular function. A systematic search of MEDLINE, Web of Science, and EMBASE was performed for articles evaluating peripheral endothelial and VSM function across the natural menstrual cycle: early follicular (EF) phase versus late follicular (LF), early luteal, mid luteal, or late luteal. A meta-analysis examined the effect of the menstrual cycle on the standardized mean difference (SMD) of the outcome measures. Analysis from 30 studies (n = 1,363 women) observed a "very low" certainty of evidence that endothelial function increased in the LF phase (SMD: 0.45, P = 0.0001), with differences observed in the macrovasculature but not in the microvasculature (SMD: 0.57, P = 0.0003, I2 = 84%; SMD: 0.21, P = 0.17, I2 = 34%, respectively). However, these results are partially explained by differences in flow-mediated dilation [e.g., discrete (SMD: 0.86, P = 0.001) vs. continuous peak diameter assessment (SMD: 0.25, P = 0.30)] and/or menstrual cycle phase methodologies. There was a "very low" certainty that endothelial function was largely unchanged in the luteal phases, and VSM was unchanged across the cycle. The menstrual cycle appears to have a small effect on macrovascular endothelial function but not on microvascular or VSM function; however, these results can be partially attributed to methodological differences.


Assuntos
Endotélio Vascular/fisiologia , Hemodinâmica , Ciclo Menstrual , Microcirculação , Músculo Liso Vascular/fisiologia , Pré-Menopausa , Adulto , Endotélio Vascular/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Humanos , Ciclo Menstrual/metabolismo , Músculo Liso Vascular/metabolismo , Pré-Menopausa/metabolismo , Transdução de Sinais , Adulto Jovem
7.
J Rehabil Med ; 51(7): 525-531, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31120542

RESUMO

OBJECTIVE: To examine longitudinal changes in traditional and non-traditional risk factors for cardiovascular disease in individuals with cerebral palsy and to investigate relationships between age, Gross Motor Function Classification System (GMFCS) and risk of cardiovascular disease. METHODS: Individuals with cerebral palsy (n = 28 of 53 eligible participants; GMFCS levels I-V; follow-up mean age 35.1 years (standard deviation (SD) 14.4) participated in a longitudinal cohort study with 4.0 years (SD 1.2) follow-up. Traditional risk factors included waist circumference and systolic blood pressure. Non-traditional risk factors included carotid artery intima media thickness and distensibility, carotid-femoral pulse wave velocity, and flow-mediated dilation. RESULTS: Absolute (0.31 mm (SD 0.13) vs 0.22 mm (SD 0.08) , p = 0.045, 95% confidence interval (95% CI) 0.040, 0.151) and relative flow-mediated dilation (9.9 % (SD 4.7) vs 7.5 % (SD 2.6), p = 0.049, 95% CI 0.464, 4.42) decreased, while carotid artery intima media thickness (0.52 mm (SD 0.17) vs 0.67 mm (SD 0.33), p = 0.041, 95% CI -0.242, -0.074) increased from baseline to follow-up. No other risk factor changed significantly. Age at baseline was a significant independent predictor of carotid artery intima media thickness change (R-squared = 0.261, p = 0.031). CONCLUSION: Individuals with cerebral palsy experience significant changes in non-traditional risk factors for cardiovascular disease over 4 years, in the face of no changes in traditional risk factors. Compared with findings in the literature from the general population, these risk factors progress at a faster rate and at a younger age in individuals with cerebral palsy.


Assuntos
Envelhecimento/fisiologia , Doenças Cardiovasculares/etiologia , Paralisia Cerebral/complicações , Adulto , Doenças Cardiovasculares/patologia , Paralisia Cerebral/patologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Fatores de Risco
8.
Am J Physiol Heart Circ Physiol ; 315(5): H1194-H1199, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074839

RESUMO

Skeletal muscle is the largest and most important site of capillary-tissue exchange, especially during high-energy demand tasks such as exercise; however, information regarding the role of the microcirculation in maintaining skeletal muscle health is limited. Changes in microcirculatory function, as observed with aging, chronic and cardiovascular diseases, and exercise, likely precede any alterations that arise in larger vessels, although further investigation into these changes is required. One of the main barriers to addressing this knowledge gap is the lack of methodologies for quantifying microvascular function in vivo; the utilization of valid and noninvasive quantification methods would allow the dynamic evaluation of microvascular flow during periods of clinical relevance such as during increased demand for flow (exercise) or decreased demand for flow (disuse). Contrast-enhanced ultrasound (CEUS) is a promising noninvasive technique that has been used for diagnostic medicine and more recently as a complementary research modality to investigate the response of the microcirculation in insulin resistance, diabetes, and aging. To improve the reproducibility of these measurements, our laboratory has optimized the quantification protocol associated with a bolus injection of the contrast agent for research purposes. This brief report outlines the assessment of microvascular flow using the raw time-intensity curve incorporated into gamma variate response modeling. CEUS could be used to compliment any macrovascular assessments to capture a more complete picture of the aging vasculature, and the modified methods presented here provide a template for the general analysis of CEUS within a research setting.


Assuntos
Envelhecimento/fisiologia , Meios de Contraste/administração & dosagem , Exercício Físico/fisiologia , Fluorocarbonos/administração & dosagem , Microcirculação , Microvasos/diagnóstico por imagem , Músculo Quadríceps/irrigação sanguínea , Ultrassonografia/métodos , Fatores Etários , Idoso , Velocidade do Fluxo Sanguíneo , Humanos , Masculino , Microbolhas , Microvasos/fisiologia , Pessoa de Meia-Idade , Modelos Cardiovasculares , Contração Muscular , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes
9.
J Appl Physiol (1985) ; 123(6): 1625-1634, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28839007

RESUMO

Weight regain, adipose tissue growth, and insulin resistance can occur within days after the cessation of regular dieting and exercise. This phenomenon has been attributed, in part, to the actions of stress hormones as well as local and systemic inflammation. We investigated the effect of curcumin, a naturally occurring polyphenol known for its anti-inflammatory properties and inhibitory action on 11ß-HSD1 activity, on preserving metabolic health and limiting adipose tissue growth following the cessation of daily exercise and caloric restriction (CR). Sprague-Dawley rats (6-7 wk old) underwent a "training" protocol of 24-h voluntary running wheel access and CR (15-20 g/day; ~50-65% of ad libitum intake) for 3 wk ("All Trained") or were sedentary and fed ad libitum ("Sed"). After 3 wk, All Trained were randomly divided into one group which was terminated immediately ("Trained"), and two detrained groups which had their wheels locked and were reintroduced to ad libitum feeding for 1 wk. The wheel locked groups received either a daily gavage of a placebo ("Detrained + Placebo") or curcumin (200 mg/kg) ("Detrained + Curcumin"). Cessation of daily CR and exercise caused an increase in body mass, as well as a 9- to 14-fold increase in epididymal, perirenal, and inguinal adipose tissue mass, all of which were attenuated by curcumin ( P < 0.05). Insulin area under the curve (AUC) during an oral glucose tolerance test, HOMA-IR, and C-reactive protein (CRP) were elevated 6-, 9-, and 2-fold, respectively, in the Detrained + Placebo group vs. the Trained group (all P < 0.05). Curcumin reduced insulin AUC, HOMA-IR, and CRP vs. the placebo group (all P < 0.05). Our results indicate that curcumin has a protective effect against weight regain and impaired metabolic control following a successful period of weight loss through diet and exercise, perhaps via inhibition of glucocorticoid action and inflammation. NEW & NOTEWORTHY Weight regain after dieting and exercise is a common phenomenon plaguing many individuals. The biological mechanisms underlying weight regain are incompletely understood and are likely multifactorial. In this paper, we examined the metabolic implications of curcumin, a compound known for its anti-inflammatory properties and inhibitory action on the enzyme 11ß-HSD1, in a rodent model of adiposity rebound after the cessation of diet and exercise.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Restrição Calórica , Curcumina/farmacologia , Intolerância à Glucose , Condicionamento Físico Animal , Aumento de Peso/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Corticosterona/sangue , Dieta , Teste de Tolerância a Glucose , Inflamação , Resistência à Insulina , Masculino , Músculo Esquelético/metabolismo , Obesidade , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
10.
J Endocrinol ; 234(2): 101-114, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28705835

RESUMO

Altered permeability of the endothelial barrier in a variety of tissues has implications both in disease pathogenesis and treatment. Glucocorticoids are potent mediators of endothelial permeability, and this forms the basis for their heavily prescribed use as medications to treat ocular disease. However, the effect of glucocorticoids on endothelial barriers elsewhere in the body is less well studied. Here, we investigated glucocorticoid-mediated changes in endothelial flux of Adiponectin (Ad), a hormone with a critical role in diabetes. First, we used monolayers of endothelial cells in vitro and found that the glucocorticoid dexamethasone increased transendothelial electrical resistance and reduced permeability of polyethylene glycol (PEG, molecular weight 4000 Da). Dexamethasone reduced flux of Ad from the apical to basolateral side, measured both by ELISA and Western blotting. We then examined a diabetic rat model induced by treatment with exogenous corticosterone, which was characterized by glucose intolerance and hyperinsulinemia. There was no change in circulating Ad but less Ad protein in skeletal muscle homogenates, despite slightly higher mRNA levels, in diabetic vs control muscles. Dexamethasone-induced changes in Ad flux across endothelial monolayers were associated with alterations in the abundance of select claudin tight junction (TJ) proteins. shRNA-mediated knockdown of one such gene, claudin-7, in HUVEC resulted in decreased TEER and increased adiponectin flux, confirming the functional significance of Dex-induced changes in its expression. In conclusion, our study identifies glucocorticoid-mediated reductions in flux of Ad across endothelial monolayers in vivo and in vitro This suggests that impaired Ad action in target tissues, as a consequence of reduced transendothelial flux, may contribute to the glucocorticoid-induced diabetic phenotype.


Assuntos
Adiponectina/metabolismo , Dexametasona/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Adiponectina/genética , Animais , Diabetes Mellitus Experimental , Impedância Elétrica , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Músculo Esquelético , Miosinas/classificação , Miosinas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
11.
Physiol Rep ; 5(10): e13243, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28533261

RESUMO

Sustained elevations in circulating glucocorticoids elicit reductions in skeletal muscle microvascular content, but little is known of the underlying mechanisms. We hypothesized that glucocorticoid-induced oxidative stress contributes to this phenomenon. In rats that were implanted with corticosterone (CORT) or control pellets, CORT caused a significant decrease in muscle glutathione levels and a corresponding increase in protein carbonylation, an irreversible oxidative modification of proteins. Decreased endothelial nitric oxide synthase and increased endothelin-1 mRNA levels were detected after 9 days of CORT, and blood flow to glycolytic muscles was diminished. Control and CORT rats were treated concurrently with drinking water containing the superoxide dismutase mimetic tempol (172 mg/L) or the α-1 adrenergic receptor antagonist prazosin (50 mg/L) for 6 or 16 days. Both tempol and prazosin alleviated skeletal muscle protein carbonylation. Tempol failed to prevent CORT-mediated capillary rarefaction and was ineffective in restoring skeletal muscle blood flow. In contrast, prazosin blocked capillary rarefaction and restored skeletal muscle blood flow to control levels. The failure of tempol to prevent CORT-induced skeletal muscle microvascular rarefaction does not support a dominant role of superoxide-induced oxidative stress in this process. Although a decrease in protein carbonylation was observed with prazosin treatment, our data suggest that the maintenance of skeletal muscle microvascular content is related more closely with counteracting the CORT-mediated influence on skeletal muscle vascular tone.


Assuntos
Corticosterona/metabolismo , Óxidos N-Cíclicos/administração & dosagem , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Animais , Capilares , Corticosterona/administração & dosagem , Masculino , Músculo Esquelético/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Prazosina/administração & dosagem , Ratos Sprague-Dawley , Marcadores de Spin , Superóxido Dismutase/administração & dosagem , Vasoconstrição/efeitos dos fármacos
12.
J Appl Physiol (1985) ; 122(3): 492-502, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27932675

RESUMO

Type-1 diabetes mellitus (T1D) causes impairments within the skeletal muscle microvasculature. Both regular exercise and prazosin have been shown to improve skeletal muscle capillarization and metabolism in healthy rats through distinct angiogenic mechanisms. The aim of this study was to evaluate the independent and additive effects of voluntary exercise and prazosin treatment on capillary-to-fiber ratio (C:F) in streptozotocin (STZ)-treated diabetic rats. STZ (65 mg/kg) was intraperitoneally administered to male Sprague-Dawley rats (n = 36) to induce diabetes, with healthy, nondiabetic, sedentary rats (n = 10) as controls. The STZ-treated rats were then divided into sedentary (SED) or exercising (EX; 24-h access to running wheels) groups and then further subdivided into prazosin (Praz) or water (H2O) treatment groups: nondiabetic-SED-H2O, STZ-SED-H2O, STZ-EX-H2O, STZ-SED-Praz, and STZ-EX-Praz. After 3 wk, untreated diabetes significantly reduced the C:F in tibialis anterior (TA) and soleus muscles in the STZ-SED-H2O animals (both P < 0.05). Voluntary exercise and prazosin treatment independently resulted in a normalization of C:F within the TA (1.86 ± 0.12 and 2.04 ± 0.03 vs 1.71 ± 0.09, P < 0.05) and the soleus (2.36 ± 0.07 and 2.68 ± 0.14 vs 2.13 ± 0.12, P < 0.05). The combined STZ-EX-Praz group resulted in the highest C:F within the TA (2.26 ± 0.07, P < 0.05). Voluntary exercise volume was negatively correlated with fed blood glucose levels (r2 = -0.7015, P < 0.01) and, when combined with prazosin, caused further enhanced nonfasted glucose (P < 0.01). Exercise and prazosin reduced circulating nonesterified fatty acids more than either stimulus alone (P < 0.05). These results suggest that the distinct stimulation of angiogenesis, with both regular exercise and prazosin treatment, causes a cooperative improvement in the microvascular complications associated with T1D.NEW & NOTEWORTHY It is currently well established that poorly controlled diabetes reduces both skeletal muscle mass and muscle capillarization. These muscle-specific features of diabetes may, in turn, compromise insulin sensitivity and glucose control. Using a model of streptozotocin-induced diabetes, we show the vascular complications linked with disease and how chronic exposure to exercise and prazosin (an α1-adrenergic antagonist) can reduce these complications and improve glycemic control.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Terapia por Exercício , Rarefação Microvascular/fisiopatologia , Rarefação Microvascular/terapia , Prazosina/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Terapia Combinada , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Angiopatias Diabéticas/induzido quimicamente , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/terapia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Rarefação Microvascular/induzido quimicamente , Rarefação Microvascular/tratamento farmacológico , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Estreptozocina , Resultado do Tratamento , Volição
13.
Am J Physiol Regul Integr Comp Physiol ; 312(1): R62-R73, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27834289

RESUMO

High-dose glucocorticoids (GC) induce skeletal muscle atrophy, insulin resistance, and reduced muscle capillarization. Identification of treatments to prevent or reverse capillary rarefaction and metabolic deterioration caused by prolonged elevations in GCs would be therapeutically beneficial. Chronic administration of prazosin, an α1-adrenergic antagonist, increases skeletal muscle capillarization in healthy rodents and, recently, in a rodent model of elevated GCs and hyperglycemia. The purpose of this study was to determine whether prazosin administration would improve glucose tolerance and insulin sensitivity, through prazosin-mediated sparing of capillary rarefaction, in this rodent model of increased GC exposure. Prazosin was provided in drinking water (50 mg/l) to GC-treated or control rats (400 mg implants of either corticosterone or a wax pellet) for 7 or 14 days (n = 5-14/group). Whole body measures of glucose metabolism were correlated with skeletal muscle capillarization (C:F) at 7 and 14 days in the four groups of rats. Individual C:F was found to be predictive of insulin sensitivity (r2 = 0.4781), but not of glucose tolerance (r2 = 0.1601) and compared with water only, prazosin treatment decreased insulin values during oral glucose challenge by approximately one-third in corticosterone (Cort)-treated animals. Cort treatment, regardless of duration, induced significant glycolytic skeletal muscle atrophy (P < 0.05), decreased IRS-1 protein content (P < 0.05), and caused elevations in FOXO1 protein expression (P < 0.05), which were unaffected with prazosin administration. In summary, it appears that α1-adrenergic antagonism improves Cort-induced skeletal muscle vascular impairments and reduces insulin secretion during an oral glucose tolerance test, but is unable to improve the negative alterations directly affecting the myocyte, including muscle size and muscle signaling protein expression.


Assuntos
Capilares/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Resistência à Insulina/fisiologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Prazosina/administração & dosagem , Antagonistas de Receptores Adrenérgicos alfa 1/administração & dosagem , Animais , Capilares/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Glucose/farmacocinética , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
Metabolites ; 6(4)2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27929385

RESUMO

Glucocorticoids (GCs) are steroid hormones, naturally produced by activation of the hypothalamic-pituitary-adrenal (HPA) axis, that mediate the immune and metabolic systems. Synthetic GCs are used to treat a number of inflammatory conditions and diseases including lupus and rheumatoid arthritis. Generally, chronic or high dose GC administration is associated with side effects such as steroid-induced skeletal muscle loss, visceral adiposity, and diabetes development. Patients who are taking exogenous GCs could also be more susceptible to poor food choices, but the effect that increasing fat consumption in combination with elevated exogenous GCs has only recently been investigated. Overall, these studies show that the damaging metabolic effects initiated through exogenous GC treatment are significantly amplified when combined with a high fat diet (HFD). Rodent studies of a HFD and elevated GCs demonstrate more glucose intolerance, hyperinsulinemia, visceral adiposity, and skeletal muscle lipid deposition when compared to rodents subjected to either treatment on its own. Exercise has recently been shown to be a viable therapeutic option for GC-treated, high-fat fed rodents, with the potential mechanisms still being examined. Clinically, these mechanistic studies underscore the importance of a low fat diet and increased physical activity levels when individuals are given a course of GC treatment.

15.
PLoS One ; 11(11): e0166899, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861620

RESUMO

Glucocorticoids (GC) elicit skeletal muscle capillary rarefaction, which can subsequently impair blood distribution and muscle function; however, the mechanisms have not been established. We hypothesized that CORT would inhibit endothelial cell survival signals but that treatment with the alpha-1 adrenergic receptor inhibitor prazosin, which leads to angiogenesis in skeletal muscle of healthy rats, would reverse these effects and induce angiogenesis within the skeletal muscle of corticosterone (CORT)-treated rats. Male Sprague Dawley rats were implanted subcutaneously with CORT pellets (400 mg/rat), with or without concurrent prazosin treatment (50mg/L in drinking water), for 1 or 2 weeks. Skeletal muscle capillary rarefaction, as indicated by a significant reduction in capillary-to-fiber ratio (C:F), occurred after 2 weeks of CORT treatment. Concurrent prazosin administration prevented this capillary rarefaction in CORT-treated animals but did not induce angiogenesis or arteriogenesis as was observed with prazosin treatment in control rats. CORT treatment reduced the mRNA level of Angiopoietin-1 (Ang-1), which was partially offset in the muscles of rats that received 2 weeks of co-treatment with prazosin. In 2W CORT animals, prazosin treatment elicited a significant increase in vascular endothelial growth factor-A (VEGF-A) mRNA and protein. Conversely prazosin did not rescue CORT-induced reductions in transforming growth factor beta-1 (TGFß1 and matrix metalloproteinase-2 (MMP-2) mRNA. To determine if CORT impaired shear stress dependent signaling, cultured rat skeletal muscle endothelial cells were pre-treated with CORT (600nM) for 48 hours, then exposed to 15 dynes/cm2 shear stress or maintained with no flow. CORT blunted the shear stress-induced increase in pSer473 Akt, while pThr308 Akt, ERK1/2 and p38 phosphorylation and nitric oxide (NO) production were unaffected. This study demonstrates that GC-mediated capillary rarefaction is associated with a reduction in Ang-1 mRNA within the skeletal muscle microenvironment and that concurrent prazosin treatment effectively increases VEGF-A levels and prevents capillary loss.


Assuntos
Capilares/efeitos dos fármacos , Capilares/patologia , Glucocorticoides/efeitos adversos , Prazosina/farmacologia , Substâncias Protetoras/farmacologia , Indutores da Angiogênese/metabolismo , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Biomarcadores , Capilares/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica , Glucocorticoides/sangue , Masculino , Camundongos , Modelos Animais , Músculo Esquelético/irrigação sanguínea , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ratos , Estresse Mecânico , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Am J Physiol Endocrinol Metab ; 311(1): E56-68, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27143556

RESUMO

Severe caloric restriction (CR), in a setting of regular physical exercise, may be a stress that sets the stage for adiposity rebound and insulin resistance when the food restriction and exercise stop. In this study, we examined the effect of mifepristone, a glucocorticoid (GC) receptor antagonist, on limiting adipose tissue mass gain and preserving whole body insulin sensitivity following the cessation of daily running and CR. We calorically restricted male Sprague-Dawley rats and provided access to voluntary running wheels for 3 wk followed by locking of the wheels and reintroduction to ad libitum feeding with or without mifepristone (80 mg·kg(-1)·day(-1)) for 1 wk. Cessation of daily running and CR increased HOMA-IR and visceral adipose mass as well as glucose and insulin area under the curve during an oral glucose tolerance test vs. pre-wheel lock exercised rats and sedentary rats (all P < 0.05). Insulin sensitivity and glucose tolerance were preserved and adipose tissue mass gain was attenuated by daily mifepristone treatment during the post-wheel lock period. These findings suggest that following regular exercise and CR there are GC-induced mechanisms that promote adipose tissue mass gain and impaired metabolic control in healthy organisms and that this phenomenon can be inhibited by the GC receptor antagonist mifepristone.


Assuntos
Adiposidade/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Restrição Calórica , Antagonistas de Hormônios/farmacologia , Gordura Intra-Abdominal/efeitos dos fármacos , Mifepristona/farmacologia , Condicionamento Físico Animal , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , Peso Corporal/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Glicogenólise/efeitos dos fármacos , Insulina/metabolismo , Resistência à Insulina , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/antagonistas & inibidores
17.
J Appl Physiol (1985) ; 118(11): 1331-43, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792713

RESUMO

Diabetes is rapidly induced in young male Sprague-Dawley rats following treatment with exogenous corticosterone (CORT) and a high-fat diet (HFD). Regular exercise alleviates insulin insensitivity and improves pancreatic ß-cell function in insulin-resistant/diabetic rodents, but its effect in an animal model of elevated glucocorticoids is unknown. We examined the effect of voluntary exercise (EX) on diabetes development in CORT-HFD-treated male Sprague-Dawley rats (∼6 wk old). Animals were acclimatized to running wheels for 2 wk, then given a HFD, either wax (placebo) or CORT pellets, and split into 4 groups: placebo-sedentary (SED) or -EX and CORT-SED or -EX. After 2 wk of running combined with treatment, CORT-EX animals had reduced visceral adiposity, and increased skeletal muscle type IIb/x fiber area, oxidative capacity, capillary-to-fiber ratio and insulin sensitivity compared with CORT-SED animals (all P < 0.05). Although CORT-EX animals still had fasting hyperglycemia, these values were significantly improved compared with CORT-SED animals (14.3 ± 1.6 vs. 18.8 ± 0.9 mM). In addition, acute in vivo insulin response to an oral glucose challenge was enhanced ∼2-fold in CORT-EX vs. CORT-SED (P < 0.05) which was further demonstrated ex vivo in isolated islets. We conclude that voluntary wheel running in rats improves, but does not fully normalize, the metabolic profile and skeletal muscle composition of animals administered CORT and HFD.


Assuntos
Comportamento Animal , Glicemia/metabolismo , Corticosterona , Diabetes Mellitus Experimental/prevenção & controle , Dieta Hiperlipídica , Glucocorticoides , Insulina/sangue , Ilhotas Pancreáticas/metabolismo , Esforço Físico , Volição , Adiposidade , Animais , Biomarcadores/sangue , Peso Corporal , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/psicologia , Metabolismo Energético , Homeostase , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/fisiopatologia , Ilhotas Pancreáticas/fisiopatologia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Ratos Sprague-Dawley , Corrida , Fatores de Tempo
18.
PLoS One ; 9(3): e91248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24642683

RESUMO

The blockade of glucocorticoid (GC) action through antagonism of the glucocorticoid receptor II (GRII) has been used to minimize the undesirable effects of chronically elevated GC levels. Mifepristone (RU486) is known to competitively block GRII action, but not exclusively, as it antagonizes the progesterone receptor. A number of new selective GRII antagonists have been developed, but limited testing has been completed in animal models of overt type 2 diabetes mellitus. Therefore, two selective GRII antagonists (C113176 and C108297) were tested to determine their effects in our model of GC-induced rapid-onset diabetes (ROD). Male Sprague-Dawley rats (∼ six weeks of age) were placed on a high-fat diet (60%), surgically implanted with pellets containing corticosterone (CORT) or wax (control) and divided into five treatment groups. Each group was treated with either a GRII antagonist or vehicle for 14 days after surgery: CORT pellets (400 mg/rat) + antagonists (80 mg/kg/day); CORT pellets + drug vehicle; and wax pellets (control) + drug vehicle. After 10 days of CORT treatment, body mass gain was increased with RU486 (by ∼20% from baseline) and maintained with C113176 administration, whereas rats given C108297 had similar body mass loss (∼15%) to ROD animals. Fasting glycemia was elevated in the ROD animals (>20 mM), normalized completely in animals treated with RU486 (6.2±0.1 mM, p<0.05) and improved in animals treated with C108297 and C113176 (14.0±1.6 and 8.8±1.6 mM, p<0.05 respectively). Glucose intolerance was normalized with RU486 treatment, whereas acute insulin response was improved with RU486 and C113176 treatment. Also, peripheral insulin resistance was attenuated with C113176 treatment along with improved levels of ß-cell function while C108297 antagonism only provided modest improvements. In summary, C113176 is an effective agent that minimized some GC-induced detrimental metabolic effects and may provide an alternative to the effective, but non-selective, GRII antagonist RU486.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Receptores de Glucocorticoides/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Corticosterona , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Dieta Hiperlipídica , Antagonistas de Hormônios/farmacologia , Insulina/metabolismo , Resistência à Insulina , Masculino , Mifepristona/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/metabolismo
19.
Appl Physiol Nutr Metab ; 37(1): 48-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22196220

RESUMO

The oxidation of carbohydrates in mammals is regulated by the pyruvate dehydrogenase (PDH) complex, which is covalently regulated by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) unique to the PDH complex. To investigate the role that PDK4 plays in regulating PDH activation (PDHa) during muscle contraction, mouse extensor digitorum muscle was removed from wild type (WT) and PDK4-knockout (PDK4-KO) mice after a 24 h fast and stimulated for 3 min either at 10 Hz (low-intensity contraction), 40 Hz (moderate-intensity contraction), or allowed to rest. Force was recorded and muscle PDHa activity and metabolite concentrations were measured. PDHa activity was ∼2.5-fold higher at rest in PDK4-KO mice than WT mice (P = 0.009) and ∼2-fold higher in PDK4-KO mice at both 10 Hz (P < 0.001) and 40 Hz (P < 0.001). Force relative to muscle weight was similar at 10 Hz, but was 5.8 ± 0.7 mN·g(-1) in PDK4-KO mice and 3.5 ± 0.7 mN·g(-1) in WT mice at 40 Hz (P < 0.001), with a similar rate of fatigue in both genotypes. From these results it was concluded that PDK4 plays a role in reducing PDHa activity during low to moderate-intensity muscle stimulation, and that absence of PDK4 and the subsequent changes in carbohydrate utilization may alter force production.


Assuntos
Metabolismo dos Carboidratos , Contração Muscular , Músculo Esquelético/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Animais , Estimulação Elétrica , Ativação Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Força Muscular , Oxirredução , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Fatores de Tempo
20.
Am J Physiol Regul Integr Comp Physiol ; 300(6): R1487-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21411764

RESUMO

Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PDH is deactivated by a set of PDH kinases (PDK1, PDK2, PDK3, PDK4), with PDK2 and PDK4 being the most predominant isoforms in skeletal muscle. Although PDK2 is the most abundant isoform, few studies have examined its physiological role. The role of PDK2 on PDH activation (PDHa) at rest and during muscle stimulation at 10 and 40 Hz (eliciting low- and moderate-intensity muscle contractions, respectively) in isolated extensor digitorum longus muscles was studied in PDK2 knockout (PDK2KO) and wild-type (WT) mice (n = 5 per group). PDHa activity was unexpectedly 35 and 77% lower in PDK2KO than WT muscle (P = 0.043), while total PDK activity was nearly fourfold lower in PDK2KO muscle (P = 0.006). During 40-Hz contractions, initial force was lower in PDK2KO than WT muscle (P < 0.001) but fatigued similarly to ∼75% of initial force by 3 min. There were no differences in initial force or rate of fatigue during 10-Hz contractions. PDK1 compensated for the lack of PDK2 and was 1.8-fold higher in PDK2KO than WT muscle (P = 0.019). This likely contributed to ensuring that resting PDHa activity was similar between the groups and accounts for the lower PDH activation during muscle contraction, as PDK1 is a very potent inhibitor of the PDH complex. Increased PDK1 expression appears to be regulated by hypoxia inducible factor-1α, which was 3.5-fold higher in PDK2KO muscle. It is clear that PDK2 activity is essential, even at rest, in regulation of carbohydrate oxidation and production of reducing equivalents for the electron transport chain. In addition, these results underscore the importance of the overall kinetics of the PDK isoform population, rather than total PDK activity, in determining transformation of the PDH complex and PDHa activity during muscle contraction.


Assuntos
Cetona Oxirredutases/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Isoformas de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA