Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS One ; 14(11): e0223918, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31710624

RESUMO

BACKGROUND & AIMS: Originally believed to be primarily a disorder of T-cell signaling, evidence shows that macrophage-lineage cells also contribute to the pathogenesis of Crohn's disease (CD). Colony stimulating factor-1 (CSF-1) is a key regulator of the macrophage lineage, but its role in CD has not been well established. We examined transcriptional data from CD mucosa for evidence of CSF-1 pathway activation and tested JNJ-40346527 (PRV-6527), a small molecule inhibitor of CSF-1 receptor kinase (CSF-1R), for its ability to inhibit disease indices in murine colitis. METHODS: A CSF-1 pathway gene set was created from microarray data of human whole blood cultured ex vivo with CSF-1 and compared to a TNFα-induced gene set generated from epithelial-lineage cells. Gene set variation analysis was performed using existing Crohn's mucosa microarray data comparing patients who either responded or failed to respond to anti-TNFα therapy. Commencing day 14 or day 21, mice with T-cell transfer colitis were treated with vehicle or JNJ-40346527 until study termination (day 42). Endpoints included colon weight/length ratios and histopathology scores, and macrophage and T cells were assessed by immunohistochemistry. Mucosal gene expression was investigated using RNAseq. RESULTS: Both the CSF-1 and the TNFα gene sets were enriched in the colonic mucosal transcriptomes of Crohn's disease and in mouse colitis, and expression of both gene sets was highest in patients who did not respond to anti-TNFα therapy. In these patients neither set was reduced by therapy. In the mouse model, JNJ-40346527 inhibited the increase in colon weight/length ratio by ∼50%, reduced histological disease scores by ∼60%, and reduced F4/80+ mononuclear cell and CD3+ lymphocyte numbers. RNAseq analysis confirmed the CSF-1 gene set was sharply reduced in treated mice, as were gene sets enriched in "M1" inflammatory and "M0" resident macrophages and in activated T cells. CONCLUSIONS: CSF-1 biology is activated in Crohn's disease and in murine T cell transfer colitis. Inhibition of CSF-1R by JNJ-40346527 was associated with attenuated clinical disease scores and reduced inflammatory gene expression in mice. These data provide rationale for testing JNJ-40346527 (PRV-6527) in human inflammatory bowel disease.


Assuntos
Colite/tratamento farmacológico , Imidazóis/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Piridinas/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Linfócitos T/patologia , Animais , Colite/imunologia , Colite/patologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Imidazóis/uso terapêutico , Inflamação/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
2.
Inflamm Res ; 68(4): 261-274, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30739130

RESUMO

OBJECTIVE/DESIGN: In a double-blind, placebo-controlled, multiple-dose study, we assessed the molecular mechanism of action of the selective histamine-4-receptor antagonist toreforant. PATIENTS/TREATMENT: Patients with active rheumatoid arthritis (RA) despite methotrexate were randomized (3:1) to toreforant 30 mg/day (weeks 0-52) or placebo (weeks 0-12) followed by toreforant 30 mg/day (weeks 12-52). METHODS: Primary biomarker analyses comprised 39 different proteins/mRNA transcripts measured in synovial biopsy (n = 39) and/or time-matched serum (n = 15) samples collected at baseline and week 6. Clinical response was assessed using C-reactive protein-based 28-joint disease activity scores. Data were summarized using descriptive statistics. RESULTS: Among 21 randomized, treated patients (toreforant-16, placebo-5), 18 (toreforant-13, placebo-5) completed the 12-week double-blind period (none completed open-label treatment) prior to the early study termination. Biomarker profiling indicated potential modest effects of toreforant on gene expression of histamine-1-receptor, tumor necrosis factor-alpha, and interleukin-8 in synovium. Potential trends between biomarkers and clinical response were observed with synovial monocyte chemoattractant protein-4 and phosphorylated extracellular-signal-regulated kinases and serum matrix metalloproteinase-3. Minimal synovial gene expression of interleukins-17A and 17F was detected. CONCLUSIONS: While clear biomarker signals associated with toreforant pharmacology in RA patients were not identified, modest associations between biomarkers and clinical response were noted. Synovial expression of interleukins-17A/17F was minimal. Limited sample size warrants cautious interpretation.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Benzimidazóis/uso terapêutico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Receptores Histamínicos H4/antagonistas & inibidores , Adolescente , Adulto , Idoso , Antirreumáticos/farmacologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Benzimidazóis/farmacologia , Método Duplo-Cego , Feminino , Antagonistas dos Receptores Histamínicos/farmacologia , Humanos , Interleucina-17/imunologia , Masculino , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Piperidinas/farmacologia , Pirimidinas/farmacologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Resultado do Tratamento , Adulto Jovem
3.
Handb Exp Pharmacol ; 241: 301-320, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28233185

RESUMO

The discovery of the histamine H4 receptor (H4R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H4R relative to other histamine receptors. The discovery of the selective H4R antagonist JNJ 7777120 was vital for showing a role for the H4R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H4R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H4R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H4R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H4R antagonists can be beneficial in treating atopic dermatitis and pruritus.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas dos Receptores Histamínicos/uso terapêutico , Histamina/metabolismo , Receptores Histamínicos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Humanos
4.
J Pharmacol Exp Ther ; 350(1): 181-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817035

RESUMO

The histamine H4 receptor (H4R) is a promising target for the treatment of pruritus. A clinical study was conducted to evaluate the safety and efficacy of the H4R antagonist, JNJ 39758979 [(R)-4-(3-amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine], on histamine-induced pruritus in healthy subjects. A single oral dose of 600 mg JNJ 39758979, 10 mg cetirizine, or placebo was administered in a randomized, three-period, double-blind, crossover study. Treatment periods were separated by 22-day washout periods. A histamine challenge was administered on day -1 and at 2 and 6 hours postdose on day 1 of each treatment period. The primary efficacy endpoint was the area under the curve (AUC) of pruritus score 0-10 minutes after the histamine challenge. Secondary efficacy endpoints included wheal and flare areas assessed 10 minutes after the histamine challenge. Safety was assessed for all subjects. Of the 24 enrolled subjects, 23 individuals completed the study. One subject withdrew after completing two treatment periods. Due to a carryover effect of JNJ 39758979, only treatment period 1 was used for pruritus-related evaluations. Compared with placebo, the reduction of the AUC of pruritus score was significant for JNJ 39758979 at 2 hours (P = 0.0248) and 6 hours (P = 0.0060), and for cetirizine at 6 hours (P = 0.0417). In all treatment periods, JNJ 39758979 did not demonstrate a significant decrease in wheal or flare at either time point, although a significant reduction was achieved with cetirizine at 2 and 6 hours (P < 0.0001). Adverse eventss reported in >1 patient with JNJ 39758979 were headache (9%) and nausea (13%). In conclusion, JNJ 39758979 was effective in inhibiting histamine-induced pruritus in healthy subjects.


Assuntos
Antagonistas dos Receptores Histamínicos/uso terapêutico , Histamina/efeitos adversos , Prurido/induzido quimicamente , Prurido/tratamento farmacológico , Pirimidinas/uso terapêutico , Pirrolidinas/uso terapêutico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Adolescente , Adulto , Cetirizina/uso terapêutico , Estudos Cross-Over , Método Duplo-Cego , Voluntários Saudáveis , Antagonistas dos Receptores Histamínicos/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Pirimidinas/efeitos adversos , Pirrolidinas/efeitos adversos , Receptores Histamínicos , Receptores Histamínicos H4 , Adulto Jovem
5.
J Pharmacol Exp Ther ; 349(2): 176-84, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549371

RESUMO

The histamine H4 receptor (H(4)R) has been shown to have preclinical involvement in both inflammatory and pruritic responses. JNJ-39758979 [(R)-4-(3-amino-pyrrolidin-1-yl)-6-isopropyl-pyrimidin-2-ylamine] is a potent and selective H(4)R antagonist with a Ki at the human receptor of 12.5 ± 2.6 nM and greater than 80-fold selectivity over other histamine receptors. The compound also exhibited excellent selectivity versus other targets. JNJ-39758979 showed dose-dependent activity in models of asthma and dermatitis consistent with other H(4)R antagonists. Preclinical toxicity studies of up to 6 months in rats and 9 months in monkeys indicated an excellent safety profile, supporting the clinical testing of the compound. An oral formulation of JNJ-39758979 was studied in a phase 1 human volunteer study to assess safety, pharmacokinetics, and pharmacodynamics. The compound was well tolerated, with the exception of dose-dependent nausea, and no safety issues were noted in the phase 1 study. JNJ-39758979 exhibited good pharmacokinetics upon oral dosing with a plasma half-life of 124-157 hours after a single oral dose. In addition, dose-dependent inhibition of histamine-induced eosinophil shape change was detected, suggesting that the H4R was inhibited in vivo. In conclusion, JNJ-39758979 is a potent and selective H(4)R antagonist that exhibited good preclinical and phase 1 safety in healthy volunteers with evidence of a pharmacodynamics effect in humans.


Assuntos
Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Asma/tratamento farmacológico , Asma/imunologia , Asma/patologia , Forma Celular/efeitos dos fármacos , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/etiologia , Dermatite de Contato/imunologia , Método Duplo-Cego , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Feminino , Humanos , Isotiocianatos , Macaca fascicularis , Masculino , Ovalbumina , Pirimidinas/efeitos adversos , Pirimidinas/farmacocinética , Ratos , Receptores Histamínicos , Receptores Histamínicos H4 , Tiazóis/efeitos adversos , Tiazóis/farmacocinética
6.
J Med Chem ; 57(6): 2429-39, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24495018

RESUMO

This report discloses the discovery and SAR of a series of 6-alkyl-2-aminopyrimidine derived histamine H4 antagonists that led to the development of JNJ 39758979, which has been studied in phase II clinical trials in asthma and atopic dermatitis. Building on our SAR studies of saturated derivatives from the indole carboxamide series, typified by JNJ 7777120, and incorporating knowledge from the tricyclic pyrimidines led us to the 6-alkyl-2,4-diaminopyrimidine series. A focused medicinal chemistry effort delivered several 6-alkyl-2,4-diaminopyrimidines that behaved as antagonists at both the human and rodent H4 receptor. Further optimization led to a panel of antagonists that were profiled in animal models of inflammatory disease. On the basis of the preclinical profile and efficacy in several animal models, JNJ 39758979 was selected as a clinical candidate; however, further development was halted during phase II because of the observation of drug-induced agranulocytosis (DIAG) in two subjects.


Assuntos
Antagonistas dos Receptores Histamínicos/síntese química , Antagonistas dos Receptores Histamínicos/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Artrite/induzido quimicamente , Artrite/prevenção & controle , Colágeno , Cães , Desenho de Fármacos , Descoberta de Drogas , Histamina , Indicadores e Reagentes , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Moleculares , Prurido/induzido quimicamente , Prurido/prevenção & controle , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos , Receptores Histamínicos H4 , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/biossíntese
7.
Ann Rheum Dis ; 73(3): 600-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24126456

RESUMO

OBJECTIVE: The histamine H4 receptor (H4R) has been shown to drive inflammatory responses in models of asthma, colitis and dermatitis, and in these models it appears to affect both innate and adaptive immune responses. In this study, we used both H4R-deficient mice and a specific H4R antagonist, JNJ 28307474, to investigate the involvement of the H4R in mouse arthritis models. METHODS: H4R-deficient mice and wild-type mice administered the H4R antagonist were studied in models of collagen antibody-induced arthritis (CAIA) and collagen-induced arthritis (CIA). The impact on Th17 cells was assessed by restimulation of inguinal lymphocytes in the disease or immunisation models and with in vitro stimulation of whole blood. RESULTS: Both H4R-deficient mice and mice treated with the H4R antagonist exhibited reduced arthritis disease severity in both CAIA and CIA models. This was evident from the reduction in disease score and in joint histology. In the CIA model, treatment with the H4R antagonist reduced the number of interleukin (IL)-17 positive cells in the lymph node and the total production of IL-17. Th17 cell development in vivo was reduced in H4R-deficient mice or in mice treated with an H4R antagonist. Finally, treatment of both mouse and human blood with an H4R antagonist reduced the production of IL-17 when cells were stimulated in vitro. CONCLUSIONS: These results implicate the H4R in disease progression in arthritis and in the production of IL-17 from Th17 cells. This work supports future clinical exploration of H4R antagonists for the treatment of rheumatoid arthritis.


Assuntos
Artrite Experimental/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Histamínicos/imunologia , Células Th17/imunologia , Animais , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Células Cultivadas , Relação Dose-Resposta a Droga , Interleucina-17/biossíntese , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/deficiência , Receptores Histamínicos/deficiência , Receptores Histamínicos H4 , Índice de Gravidade de Doença
8.
Inflamm Res ; 62(6): 599-607, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532396

RESUMO

OBJECTIVE: Antagonism of the histamine H4 receptor (H4R) has been shown to be anti-inflammatory in a number of preclinical disease models, however the exact mechanisms behind this are still being uncovered. In vitro, the receptor interacts with TLR and impacts inflammatory mediator production from a number of different cell types. Here it is shown that this interaction also occurs in vivo. MATERIALS AND METHODS: Wild-type and H4R deficient BALB/c mice received an i.p. injection of LPS in PBS in conjunction with p.o. JNJ 7777120 or JNJ 28307474 (H4R antagonists). Two hours later blood was collected and TNF was measured. RESULTS: Two different H4R antagonists inhibited LPS-induced TNF production in mice and this production was also reduced in H4R-deficient mice. The TNF mRNA analysis showed that the major source of the cytokine was the liver and not blood, and that the H4R antagonist only reduced the expression levels in the liver. Depletion or inactivation of macrophages reduced the TNF levels and eliminated the H4R sensitivity. Treatment with an H4R antagonist also reduced LPS-induced liver injury and blocked LPS-enhanced lung inflammation in mice. CONCLUSION: The data support an interaction between H4R and TLR activation in vivo that can drive inflammatory responses.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Alérgenos , Animais , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/imunologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Feminino , Humanos , Indóis/farmacologia , Interleucina-13/imunologia , Células de Kupffer/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Ovalbumina , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores Histamínicos/fisiologia , Receptores Histamínicos H4 , Fator de Necrose Tumoral alfa/genética
9.
Respir Res ; 11: 86, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20573261

RESUMO

BACKGROUND: Airway remodeling and dysfunction are characteristic features of asthma thought to be caused by aberrant production of Th2 cytokines. Histamine H4 receptor (H4R) perturbation has previously been shown to modify acute inflammation and Th2 cytokine production in a murine model of asthma. We examined the ability of H4R antagonists to therapeutically modify the effects of Th2 cytokine production such as goblet cell hyperplasia (GCH), and collagen deposition in a sub-chronic model of asthma. In addition, effects on Th2 mediated lung dysfunction were also determined. METHODS: Mice were sensitized to ovalbumin (OVA) followed by repeated airway challenge with OVA. After inflammation was established mice were dosed with the H4R antagonist, JNJ 7777120, or anti-IL-13 antibody for comparison. Airway hyperreactivity (AHR) was measured, lungs lavaged and tissues collected for analysis. RESULTS: Therapeutic H4R antagonism inhibited T cell infiltration in to the lung and decreased Th2 cytokines IL-13 and IL-5. IL-13 dependent remodeling parameters such as GCH and lung collagen were reduced. Intervention with H4R antagonist also improved measures of central and peripheral airway dysfunction. CONCLUSIONS: These data demonstrate that therapeutic H4R antagonism can significantly ameliorate allergen induced, Th2 cytokine driven pathologies such as lung remodeling and airway dysfunction. The ability of H4R antagonists to affect these key manifestations of asthma suggests their potential as novel human therapeutics.


Assuntos
Anti-Inflamatórios/farmacologia , Asma/tratamento farmacológico , Hiper-Reatividade Brônquica/tratamento farmacológico , Antagonistas dos Receptores Histamínicos/farmacologia , Indóis/farmacologia , Mediadores da Inflamação/metabolismo , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Células Th2/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Asma/imunologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Testes de Provocação Brônquica , Colágeno/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/imunologia , Células Caliciformes/patologia , Hiperplasia , Interleucina-13/antagonistas & inibidores , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Células Th2/imunologia
10.
Am J Respir Crit Care Med ; 181(9): 899-907, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20110560

RESUMO

RATIONALE: Allergic asthma is characterized by reversible airway obstruction, lung inflammation, and airway hyperresponsiveness (AHR). Previous studies using leukotriene B(4) (LTB(4)) receptor 1-deficient mice and adoptive transfer experiments have suggested that LTB(4) plays a role in lung inflammation and AHR. OBJECTIVES: In this study, we used a leukotriene A(4) hydrolase (LTA(4)H) inhibitor as a pharmacological tool to directly examine the role of LTB(4) in a mast cell-dependent murine model of allergic airway inflammation. METHODS: We used the forced oscillation technique to test the effects of an LTA(4)H inhibitor dosed during the challenge phase on AHR. Lung tissue and lavage were collected for analysis. MEASUREMENTS AND MAIN RESULTS: Treatment with an LTA(4)H inhibitor improved multiple parameters encompassing AHR and lung function. Significant decreases in inflammatory leukocytes, cytokines, and mucin were observed in the lung lumen. Serum levels of antigen-specific IgE and IgG1 were also decreased. Labeled antigen uptake by lung dendritic cells and subsequent trafficking to draining lymph nodes and the lung were decreased on LTA(4)H inhibitor treatment. Provocatively, inhibition of LTA(4)H increased lipoxin A(4) levels in lung lavage fluid. CONCLUSIONS: These data suggest that LTB(4) plays a key role in driving lung inflammation and AHR. Mechanistically, we provide evidence that inhibition of LTA(4)H, affects recruitment of both CD4(+) and CD8(+) T cells, as well as trafficking of dendritic cells to draining lymph nodes, and may beneficially modulate other pro- and antiinflammatory eicosanoids in the lung. Inhibition of LTA(4)H is thus a potential therapeutic strategy that could modulate key aspects of asthma.


Assuntos
Asma/fisiopatologia , Hiper-Reatividade Brônquica/fisiopatologia , Epóxido Hidrolases/antagonistas & inibidores , Leucotrieno B4/fisiologia , Animais , Líquido da Lavagem Broncoalveolar/química , Células Cultivadas , Citocinas/análise , Imunoglobulina E/sangue , Leucotrieno B4/análise , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mucinas/análise , Ovalbumina/imunologia
11.
Adv Exp Med Biol ; 709: 53-66, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21618887

RESUMO

Histamine is a ubiquitous inflammatory mediator intimately associated with the pathology of allergy. Traditional antihistamines, targeting the histamine H1 receptor, have failed to demonstrate a significant role for histamine in asthma. Novel immunomodulatory roles for histamine and the discovery of a novel histamine receptor, the histamine H4 receptor, have resulted in a reassessment of its importance in asthma.


Assuntos
Asma/imunologia , Histamina/imunologia , Animais , Asma/tratamento farmacológico , Modelos Animais de Doenças , Histamina/uso terapêutico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Sistema Imunitário/citologia , Pulmão/imunologia , Pulmão/patologia , Receptores Histamínicos/imunologia
12.
J Invest Dermatol ; 130(4): 1023-33, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19907432

RESUMO

The role of histamine H(4) receptor (H(4)R) was investigated in a T-helper type 2 (Th2)-cell-mediated mouse skin inflammation model that mimics several of the features of atopic dermatitis. Treatment with two specific H(4)R antagonists before challenge with FITC led to a significant reduction in ear edema, inflammation, mast cell, and eosinophil infiltration. This was accompanied by a reduction in the levels of several cytokines and chemokines in the ear tissue. Upon ex vivo antigen stimulation of lymph nodes, H(4)R antagonism reduced lymphocyte proliferation and IL-4, IL-5, and IL-17 levels. One explanation for this finding is that lymph nodes from animals dosed with the H(4)R antagonist, JNJ 7777120, contained a lower number of FITC-positive dendritic cells. The effect of H(4)R antagonism on dendritic cell migration in vivo may be an indirect result of the reduction in tissue cytokines and chemokines or a direct effect on chemotaxis. In addition to anti-inflammatory effects, JNJ 7777120 also significantly inhibited the pruritus shown in the model. Therefore, the dual effects of H(4)R antagonists on pruritus and Th2-cell-mediated inflammation point to their therapeutic potential for the treatment of Th2-mediated skin disorders, including atopic dermatitis.


Assuntos
Dermatite Atópica/imunologia , Prurido/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Histamínicos/imunologia , Células Th2/imunologia , Animais , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/fisiopatologia , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/imunologia , Edema/fisiopatologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Fluoresceína-5-Isotiocianato , Antagonistas dos Receptores Histamínicos/farmacologia , Indóis/farmacologia , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Piperazinas/farmacologia , Prurido/tratamento farmacológico , Prurido/fisiopatologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/genética , Receptores Histamínicos H4 , Células Th2/citologia , Células Th2/metabolismo
13.
J Med Chem ; 51(14): 4150-69, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18588282

RESUMO

LTA 4H is a ubiquitously distributed 69 kDa zinc-containing cytosolic enzyme with both hydrolase and aminopeptidase activity. As a hydrolase, LTA 4H stereospecifically catalyzes the transformation of the unstable epoxide LTA 4 to the diol LTB 4, a potent chemoattractant and activator of neutrophils and a chemoattractant of eosinophils, macrophages, mast cells, and T cells. Inhibiting the formation of LTB 4 is expected to be beneficial in the treatment of inflammatory diseases such as inflammatory bowel disease (IBD), asthma, and atherosclerosis. We developed a pharmacophore model using a known inhibitor manually docked into the active site of LTA 4H to identify a subset of compounds for screening. From this work we identified a series of benzoxazole, benzthiazole, and benzimidazole inhibitors. SAR studies resulted in the identification of several potent inhibitors with an appropriate cross-reactivity profile and excellent PK/PD properties. Our efforts focused on further profiling JNJ 27265732, which showed encouraging efficacy in a disease model relevant to IBD.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Catálise , Cães , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Relação Estrutura-Atividade
14.
Mol Cancer Ther ; 7(3): 492-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18347137

RESUMO

B-RAF mutations have been identified in the majority of melanoma and a large fraction of colorectal and papillary thyroid carcinoma. Drug discovery efforts targeting mutated B-RAF have yielded several interesting molecules, and currently, three compounds are undergoing clinical evaluation. Inhibition of B-RAF in animal models leads to a slowing of tumor growth and, in some cases, tumor reduction. Described within is a novel series of diaryl imidazoles with potent, single-digit nanomolar, anti-B-RAF activity. One compound from this series has been detailed here and has been shown to block B-RAF(V600E)-dependent extracellular signal-regulated kinase 1/2 phosphorylation in SK-MEL-28 melanoma cells as well as soft agar colony formation and proliferation. Importantly, interleukin-8 (IL-8) was identified by quantitative real-time PCR and ELISA as a product of the elevated mitogen-activated protein kinase signaling in these cells. Plasma concentrations of IL-8 in mice bearing melanoma xenografts were significantly reduced following exposure to B-RAF inhibitors. Taken together, these data suggest that IL-8 could serve as a tractable clinical biomarker.


Assuntos
Biomarcadores Tumorais/metabolismo , Interleucina-8/antagonistas & inibidores , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Humanos , Imidazóis/farmacologia , Interleucina-8/biossíntese , Interleucina-8/genética , Melanoma/patologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Transplante Heterólogo
15.
Nat Rev Drug Discov ; 7(1): 41-53, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18172439

RESUMO

Histamine has a key role in allergic inflammatory conditions. The inflammatory responses resulting from the liberation of histamine have long been thought to be mediated by the histamine H1 receptor, and H1-receptor antagonists--commonly known as antihistamines--have been used to treat allergies for many years. However, the importance of histamine in the pathology of conditions such as asthma and chronic pruritus may have been underestimated. Here, we review accumulating evidence suggesting that histamine indeed has roles in inflammation and immune function modulation in such diseases. In particular, the discovery of a fourth histamine receptor (H4) and its expression on numerous immune and inflammatory cells has prompted a re-evaluation of the actions of histamine, suggesting a new potential for H4-receptor antagonists and a possible synergy between H1 and H4-receptor antagonists in targeting various inflammatory conditions.


Assuntos
Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Histamina/fisiologia , Hipersensibilidade/fisiopatologia , Inflamação/tratamento farmacológico , Receptores Acoplados a Proteínas G/fisiologia , Receptores Histamínicos H1/fisiologia , Receptores Histamínicos/fisiologia , Artrite/fisiopatologia , Desenho de Fármacos , Histamina/sangue , Hipersensibilidade/tratamento farmacológico , Ligantes , Receptores Histamínicos H4
16.
J Pharmacol Exp Ther ; 321(3): 1154-60, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17371808

RESUMO

Leukotriene A(4) hydrolase (LTA(4)H) catalyzes production of the proinflammatory lipid mediator, leukotriene (LT) B(4), which is implicated in a number of inflammatory diseases. We have identified a potent and selective inhibitor of both the epoxide hydrolase and aminopeptidase activities of recombinant human LTA(4)H (IC(50), approximately 10 nM). In a murine model of arachidonic acid-induced ear inflammation, the LTA(4)H inhibitor, JNJ-26993135 (1-[4-(benzothiazol-2-yloxy)-benzyl]-piperidine-4-carboxylic acid), dose-dependently inhibited ex vivo LTB(4) production in blood, in parallel with dose-dependent inhibition of neutrophil influx (ED(50), 1-3 mg/kg) and ear edema. In murine whole blood and in zymosan-induced peritonitis, JNJ-26993135 selectively inhibited LTB(4) production, without affecting cysteinyl leukotriene production, while maintaining or increasing production of the anti-inflammatory mediator, lipoxin (LX) A(4). The 5-lipoxygenase (5-LO) inhibitor zileuton showed inhibition of LTB(4), LTC(4), and LXA(4) production. Although zileuton inhibited LTB(4) production in the peritonitis model more effectively than the LTA(4)H inhibitor, the influx of neutrophils into the peritoneum after 1 and 2 h was significantly higher in zileuton- versus JNJ-26993135-treated animals. This difference may have been mediated by the increased LXA(4) levels in the presence of the LTA(4)H inhibitor. The selective inhibition of LTB(4) production by JNJ-26993135, while increasing levels of the anti-inflammatory mediator, LXA(4), may translate to superior therapeutic efficacy versus 5-LO or 5-LO-activating protein inhibitors in LTB(4)-mediated inflammatory diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzotiazóis/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Hidroxiureia/análogos & derivados , Inibidores de Lipoxigenase , Piperidinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Ácido Araquidônico/farmacologia , Líquido Ascítico/efeitos dos fármacos , Líquido Ascítico/metabolismo , Benzotiazóis/metabolismo , Benzotiazóis/uso terapêutico , Cães , Orelha/patologia , Edema/patologia , Edema/prevenção & controle , Eicosanoides/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Humanos , Hidroxiureia/metabolismo , Hidroxiureia/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Leucotrieno B4/metabolismo , Leucotrieno C4/metabolismo , Lipoxinas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Infiltração de Neutrófilos/efeitos dos fármacos , Peritonite/metabolismo , Peritonite/patologia , Peritonite/prevenção & controle , Piperidinas/metabolismo , Piperidinas/uso terapêutico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Pharmacol Ther ; 113(3): 594-606, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17275092

RESUMO

All 4 known histamine receptors (H(1)R, H(2)R, H(3)R and H(4)R) have been used or proposed as therapeutic targets for varied diseases. This article reviews the recent progress in understanding the function of the recently described histamine receptor H(4)R in a variety of immune responses and the potential therapeutic value of H(4)R antagonists. The H(4)R is expressed primarily on cells involved in inflammation and immune response. It has effects on chemotaxis, as well as cytokine and chemokine production of mast cells, eosinophils, dendritic cells, and T cells. H(4)R antagonists, JNJ 7777120 and JNJ 10191584 (also known as VUF 6002) have been developed with excellent affinity and selectivity towards human and rodent H(4)R. These antagonists also demonstrate efficacy as anti-inflammatory agents in vivo. H(4)R antagonists have shown promising activity in down-regulating immune responses in a range of animal disease models including acute inflammation, hapten-mediated colitis, and allergic airway inflammation. Due to its distribution on immune cells and its proven role in inflammatory functions, the H(4)R appears to be a therapeutic target for the treatment of a variety of immune disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças do Sistema Imunitário/tratamento farmacológico , Inflamação/tratamento farmacológico , Receptores Acoplados a Proteínas G/fisiologia , Receptores Histamínicos/fisiologia , Animais , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Quimiotaxia/fisiologia , Citocinas/fisiologia , Regulação para Baixo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Regulação da Expressão Gênica , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Piperazinas/farmacocinética , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Histamínicos/efeitos dos fármacos , Receptores Histamínicos H4
18.
J Allergy Clin Immunol ; 119(1): 176-83, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17208599

RESUMO

BACKGROUND: Histamine is a potent mediator of itch in humans, yet histamine H(1) receptor antagonists have been shown to be of limited use in the treatment of certain chronic pruritic diseases. The histamine H(4) receptor is a recently described histamine receptor, expressed on hematopoietic cells, linked to the pathology of allergy and asthma. OBJECTIVE: The contribution of the novel histamine H(4) receptor to histaminergic and allergic pruritus was investigated. RESULTS: Histamine and a selective histamine H(4) receptor agonist caused scratching responses in mice, which were almost completely attenuated in histamine H(4) receptor knockout mice or by pretreatment with the selective histamine H(4) receptor antagonist, JNJ 7777120. Pruritus induced by allergic mechanisms was also potently inhibited with histamine H(4) receptor antagonist treatment or in histamine H(4) receptor knockout mice. In all cases, the inhibitory effect of histamine H(4) receptor antagonist was greater than those observed with histamine H(1) receptor antagonists. The histamine H(4) receptor-mediated pruritus was shown to be independent of mast cells or other hematopoietic cells and may result from actions on peripheral neurons. CONCLUSION: These results demonstrate that the histamine H(4) receptor is involved in pruritic responses in mice to a greater extent than the histamine H(1) receptor. CLINICAL IMPLICATIONS: Histamine H(4) receptor antagonists may have therapeutic utility for treating chronic pruritic diseases in humans where histamine H(1) receptor antagonists are not effective.


Assuntos
Antagonistas dos Receptores Histamínicos/farmacologia , Indóis/farmacologia , Piperazinas/farmacologia , Prurido/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Edema/induzido quimicamente , Feminino , , Histamina , Agonistas dos Receptores Histamínicos/farmacologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Prurido/induzido quimicamente , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/deficiência , Receptores Histamínicos/genética , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H4
19.
J Immunol ; 176(11): 7062-70, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16709868

RESUMO

Histamine is an important inflammatory mediator that is released in airways during an asthmatic response. However, current antihistamine drugs are not effective in controlling the disease. The discovery of the histamine H4 receptor (H4R) prompted us to reinvestigate the role of histamine in pulmonary allergic responses. H4R-deficient mice and mice treated with H4R antagonists exhibited decreased allergic lung inflammation, with decreases in infiltrating lung eosinophils and lymphocytes and decreases in Th2 responses. Ex vivo restimulation of T cells showed decreases in IL-4, IL-5, IL-13, IL-6, and IL-17 levels, suggesting that T cell functions were disrupted. In vitro studies indicated that blockade of the H4R on dendritic cells leads to decreases in cytokine and chemokine production and limits their ability to induce Th2 responses in T cells. This work suggests that the H4R can modulate allergic responses via its influence on T cell activation. The study expands the known influences of histamine on the immune system and highlights the therapeutic potential of H4R antagonists in allergic conditions.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Pulmão/patologia , Ativação Linfocitária , Receptores Acoplados a Proteínas G/fisiologia , Receptores Histamínicos/fisiologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Alérgenos/administração & dosagem , Animais , Benzimidazóis/administração & dosagem , Linfócitos T CD4-Positivos/citologia , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Modelos Animais de Doenças , Feminino , Indóis/administração & dosagem , Inflamação/imunologia , Inflamação/metabolismo , Pulmão/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Piperazinas/administração & dosagem , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/deficiência , Receptores Histamínicos/genética , Receptores Histamínicos H4 , Hipersensibilidade Respiratória/genética
20.
J Med Chem ; 48(26): 8289-98, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16366610

RESUMO

Three series of H(4) receptor ligands, derived from indoly-2-yl-(4-methyl-piperazin-1-yl)-methanones, have been synthesized and their structure-activity relationships evaluated for activity at the H(4) receptor in competitive binding and functional assays. In all cases, substitution of small lipophilic groups in the 4 and 5-positions led to increased activity in a [(3)H]histamine radiolabeled ligand competitive binding assay. In vitro metabolism and initial pharmacokinetic studies were performed on selected compounds leading to the identification of indole 8 and benzimidazole 40 as potent H(4) antagonists with the potential for further development. In addition, both 8 and 40 demonstrated efficacy in in vitro mast cell and eosinophil chemotaxis assays.


Assuntos
Antagonistas dos Receptores Histamínicos/síntese química , Antagonistas dos Receptores Histamínicos/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Benzimidazóis/síntese química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Ligação Competitiva , Linhagem Celular Tumoral , Quimiotaxia de Leucócito/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/farmacocinética , Humanos , Indóis/síntese química , Indóis/farmacocinética , Indóis/farmacologia , Mastócitos/efeitos dos fármacos , Camundongos , Piperazinas/farmacocinética , Ratos , Receptores Histamínicos , Receptores Histamínicos H4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA