Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Lab Hematol ; 46(2): 329-335, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37918971

RESUMO

INTRODUCTION: Prothrombin Belgrade mutation is the result of the c.1787G>A substitution in the prothrombin gene. It is located in the antithrombin and sodium binding site and leads to impaired inactivation of thrombin by antithrombin, resulting in antithrombin resistance and thrombotic disorders. However, it negatively affects sodium binding and may have hypocoagulant effects. Considering that prothrombin Belgrade mutation mechanism is still not fully elucidated and that sodium binding is important for thrombin affinity towards fibrinogen, our aim was to determine whether this mutation affects fibrin clot formation and lysis. METHODS: Using HEK293T cell line, recombinant wild type and mutated prothrombin were generated by transient transfection. Samples that correspond to plasma of a non-carrier, heterozygous and homozygous carriers were reconstituted using prothrombin deficient plasma and recombinant proteins. Reconstituted samples were used in OHP assay (Overall Hemostasis Potential) to determine kinetic profiles of coagulation and fibrinolysis. Clot turbidity assay was performed to observe kinetics of clot formation and lysis more closely. Fibrin clots formed in reconstituted plasma samples were analyzed by confocal microscopy to determine density of fibrin network. Fibrin clots were additionally observed using electron microscopy to determine thickness of individual fibrin fibers. RESULTS: No significant difference found in OHP, OCP, OFP, and fibrin network density between wild type, heterozygous, and homozygous carrier reconstituted plasma samples. There were significant differences between samples for slope and slope time parameters in kinetic profiles and fibrin fiber thickness. CONCLUSIONS: Results indicate that prothrombin Belgrade mutation has no significant impact on fibrinolysis, however it may affect kinetics of clot formation and its architecture.


Assuntos
Fibrina , Trombose , Humanos , Fibrina/química , Protrombina/genética , Protrombina/metabolismo , Antitrombinas , Trombina/metabolismo , Células HEK293 , Trombose/genética , Fibrinólise , Anticoagulantes/farmacologia , Antitrombina III/genética , Mutação , Sódio/farmacologia
3.
PLoS One ; 18(4): e0284084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098010

RESUMO

Antithrombin resistance is a rare subtype of hereditary thrombophilia caused by prothrombin gene variants, leading to thrombotic disorders. Recently, the Prothrombin Belgrade variant has been reported as a specific variant that leads to antithrombin resistance in two Serbian families with thrombosis. However, due to clinical data scarcity and the inapplicability of traditional genome-wide association studies (GWAS), a broader perspective on molecular and phenotypic mechanisms associated with the Prothrombin Belgrade variant is yet to be uncovered. Here, we propose an integrative framework to address the lack of genomic samples and support the genomic signal from the full genome sequences of five heterozygous subjects by integrating it with subjects' phenotypes and the genes' molecular interactions. Our goal is to identify candidate thrombophilia-related genes for which our subjects possess germline variants by focusing on the resulting gene clusters of our integrative framework. We applied a Non-negative Matrix Tri-Factorization-based method to simultaneously integrate different data sources, taking into account the observed phenotypes. In other words, our data-integration framework reveals gene clusters involved with this rare disease by fusing different datasets. Our results are in concordance with the current literature about antithrombin resistance. We also found candidate disease-related genes that need to be further investigated. CD320, RTEL1, UCP2, APOA5 and PROZ participate in healthy-specific or disease-specific subnetworks involving thrombophilia-annotated genes and are related to general thrombophilia mechanisms according to the literature. Moreover, the ADRA2A and TBXA2R subnetworks analysis suggested that their variants may have a protective effect due to their connection with decreased platelet activation. The results show that our method can give insights into antithrombin resistance even if a small amount of genetic data is available. Our framework is also customizable, meaning that it applies to any other rare disease.


Assuntos
Trombofilia , Trombose , Humanos , Protrombina , Estudo de Associação Genômica Ampla , Doenças Raras , Mutação , Trombofilia/genética , Antitrombinas , Anticoagulantes , Antitrombina III , Fenótipo
4.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628361

RESUMO

Bronchial epithelial cells are exposed to environmental influences, microbiota, and pathogens and also serve as a powerful effector that initiate and propagate inflammation by the release of pro-inflammatory mediators. Recent studies suggested that lung microbiota differ between inflammatory lung diseases and healthy lungs implicating their contribution in the modulation of lung immunity. Lactic acid bacteria (LAB) are natural inhabitants of healthy human lungs and also possess immunomodulatory effects, but so far, there are no studies investigating their anti-inflammatory potential in respiratory cells. In this study, we investigated immunomodulatory features of 21 natural LAB strains in lipopolysaccharide (LPS)-stimulated human bronchial epithelial cells (BEAS-2B). Our results show that several LAB strains reduced the expression of pro-inflammatory cytokine and chemokine genes. We also demonstrated that two LAB strains, Lactobacillus brevis BGZLS10-17 and Lb. plantarum BGPKM22, effectively attenuated LPS-induced nuclear factor-κB (NF-κB) nuclear translocation. Moreover, BGZLS10-17 and BGPKM22 reduced the activation of p38, extracellular signal-related kinase (ERK), and c-Jun amino-terminal kinase (JNK) signaling cascade resulting in a reduction of pro-inflammatory mediator expressions in BEAS-2B cells. Collectively, the LAB strains BGZLS10-17 and BGPKM22 exhibited anti-inflammatory effects in BEAS-2B cells and could be employed to balance immune response in lungs and replenish diminished lung microbiota in chronic lung diseases.


Assuntos
Brônquios , Levilactobacillus brevis , Pneumopatias , Sistema de Sinalização das MAP Quinases , NF-kappa B , Anti-Inflamatórios/farmacologia , Brônquios/citologia , Brônquios/metabolismo , Brônquios/microbiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Levilactobacillus brevis/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Pneumopatias/metabolismo , Pneumopatias/terapia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA