Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Clin Neurophysiol ; 149: 33-41, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878028

RESUMO

OBJECTIVE: Electrographic seizures are common among critically ill children, and have been associated with worse outcomes. Despite their often-widespread cortical representation, most of these seizures remain subclinical, a phenomenon which remains poorly understood. We compared the brain network properties of clinical versus subclinical seizures to gain insight into their relative potential deleterious effects. METHODS: Functional connectivity (phase lag index) and graph measures (global efficiency and clustering coefficients) were computed for 2178 electrographic seizures recorded during 48-hours of 19-channel continuous EEG monitoring obtained in 20 comatose children. Frequency-specific group differences in clinical versus subclinical seizures were analyzed using a non-parametric ANCOVA, adjusting for age, sex, medication exposure, treatment intensity and seizures per subject. RESULTS: Clinical seizures demonstrated greater functional connectivity than subclinical seizures at alpha frequencies, but less connectivity than subclinical seizures at delta frequencies. Clinical seizures also demonstrated significantly higher median global efficiency than subclinical seizures (p < 0.01), and significantly higher median clustering coefficients across all electrodes at alpha frequencies. CONCLUSIONS: Clinical expression of seizures correlates with greater alpha synchronization of distributed brain networks. SIGNIFICANCE: The stronger global and local alpha-mediated functional connectivity observed during clinical seizures may indicate greater pathological network recruitment. These observations motivate further studies to investigate whether the clinical expression of seizures may influence their potential to cause secondary brain injury.


Assuntos
Estado Terminal , Epilepsias Parciais , Criança , Humanos , Eletroencefalografia/efeitos adversos , Encéfalo , Convulsões/etiologia
2.
J Child Neurol ; 38(1-2): 85-102, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36380680

RESUMO

Up to 30% of youth with concussion experience PPCSs (PPCS) lasting 4 weeks or longer, and can significantly impact quality of life. Magnetic resonance imaging (MRI) has the potential to increase understanding of causal mechanisms underlying PPCS. However, there are no clear modalities to assist in detecting PPCS. This scoping review aims to synthesize findings on utilization of MRI among children and youth with PPCS, and summarize progress and limitations. Thirty-six studies were included from 4907 identified papers. Many studies used multiple modalities, including (1) structural (n = 27) such as T1-weighted imaging, diffusion weighted imaging, and susceptibility weighted imaging; and (2) functional (n = 23) such as functional MRI and perfusion-weighted imaging. Findings were heterogeneous among modalities and regions of interest, which warrants future reviews that report on the patterns and potential advancements in the field. Consideration of modalities that target PPCS prediction and sensitive modalities that can supplement a biopsychosocial approach to PPCS would benefit future research.


Assuntos
Concussão Encefálica , Síndrome Pós-Concussão , Adolescente , Criança , Humanos , Qualidade de Vida , Síndrome Pós-Concussão/diagnóstico por imagem , Síndrome Pós-Concussão/etiologia , Concussão Encefálica/complicações , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
3.
Commun Biol ; 5(1): 1000, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131088

RESUMO

Neuronal populations in the brain are engaged in a temporally coordinated manner at rest. Here we show that spontaneous transitions between large-scale resting-state networks are altered in chronic neuropathic pain. We applied an approach based on the Hidden Markov Model to magnetoencephalography data to describe how the brain moves from one activity state to another. This identified 12 fast transient (~80 ms) brain states including the sensorimotor, ascending nociceptive pathway, salience, visual, and default mode networks. Compared to healthy controls, we found that people with neuropathic pain exhibited abnormal alpha power in the right ascending nociceptive pathway state, but higher power and coherence in the sensorimotor network state in the beta band, and shorter time intervals between visits of the sensorimotor network, indicating more active time in this state. Conversely, the neuropathic pain group showed lower coherence and spent less time in the frontal attentional state. Therefore, this study reveals a temporal imbalance and dysregulation of spectral frequency-specific brain microstates in patients with neuropathic pain. These findings can potentially impact the development of a mechanism-based therapeutic approach by identifying brain targets to stimulate using neuromodulation to modify abnormal activity and to restore effective neuronal synchrony between brain states.


Assuntos
Magnetoencefalografia , Neuralgia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética
4.
Neurotrauma Rep ; 3(1): 299-307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060456

RESUMO

Cortical gyrification, as a specific measure derived from magnetic resonance imaging, remains understudied in mild traumatic brain injury (mTBI). Local gyrification index (lGI) and mean curvature are related measures indexing the patterned folding of the cortex,ml which reflect distinct properties of cortical morphology and geometry. Using both metrics, we examined cortical gyrification morphology in 59 adult males with mTBI (n = 29) versus those without (n = 30) mTBI in the subacute phase of injury (between 2 weeks and 3 months). The effect of IQ on lGI and brain-symptom relations were also examined. General linear models revealed greater lGI in mTBI versus controls in the frontal lobes bilaterally, but reduced lGI in mTBI of the left temporal lobe. An age-related decrease in lGI was found in numerous areas, with no significant group-by-age interaction effects observed. Including other factors (i.e., mTBI severity, symptoms, and IQ) in the lGI model yielded similar results with few exceptions. Mean curvature analyses depicted a significant group-by-age interaction with the absence of significant main effects of group or age. Our results suggest that cortical gyrification morphology is adversely affected by mTBI in both frontal and temporal lobes, which are thought of as highly susceptible regions to mTBI. These findings contribute to understanding the effects of mTBI on neuromorphological properties, such as alterations in cortical gyrification, which reflect underlying microstructural changes (i.e., apoptosis, neuronal number, or white matter alterations). Future studies are needed to infer causal relationships between micro- and macrostructural changes after an mTBI and investigate potential sex differences.

5.
Epilepsia ; 63(10): 2583-2596, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35778973

RESUMO

OBJECTIVE: Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS: Intracranial recordings were acquired from stereotactically implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative, respectively. Trials with and without transient epileptiform events were compared. RESULTS: Twelve children (mean age = 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rayleigh z-score = 9, Rayleigh z-score = 8). Retrieval trials that were in phase with the preferred phase angle were associated with faster reaction times (p = .01, p = .03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (phase difference derivative [PDD] z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rayleigh z-score = 5, Rayleigh z-score = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = .01, p = .03). SIGNIFICANCE: This work highlights the role of hippocampal phase in working memory. We observe poststimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Adolescente , Criança , Hipocampo , Humanos , Transtornos da Memória/etiologia , Memória de Curto Prazo
6.
Hum Brain Mapp ; 43(17): 5296-5309, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796166

RESUMO

Mild traumatic brain (mTBI) injury is often associated with long-term cognitive and behavioral complications, including an increased risk of memory impairment. Current research challenges include a lack of cross-modal convergence regarding the underlying neural-behavioral mechanisms of mTBI, which hinders therapeutics and outcome management for this frequently under-treated and vulnerable population. We used multi-modality imaging methods including magnetoencephalography (MEG) and diffusion tensor imaging (DTI) to investigate brain-behavior impairment in mTBI related to working memory. A total of 41 participants were recruited, including 23 patients with a first-time mTBI imaged within 3 months of injury (all male, age = 29.9, SD = 6.9), and 18 control participants (all male, age = 27.3, SD = 5.3). Whole-brain statistics revealed spatially concomitant functional-structural disruptions in brain-behavior interactions in working memory in the mTBI group compared with the control group. These disruptions are located in the hippocampal-prefrontal region and, additionally, in the amygdala (measured by MEG neural activation and DTI measures of fractional anisotropy in relation to working memory performance; p < .05, two-way ANCOVA, nonparametric permutations, corrected). Impaired brain-behavior connections found in the hippocampal-prefrontal and amygdala circuits indicate brain dysregulation of memory, which may leave mTBI patients vulnerable to increased environmental demands exerting memory resources, leading to related cognitive and emotional psychopathologies. The findings yield clinical implications and highlight a need for early rehabilitation after mTBI, including attention- and sensory-based behavioral exercises.


Assuntos
Concussão Encefálica , Imagem de Tensor de Difusão , Humanos , Masculino , Adulto , Imagem de Tensor de Difusão/métodos , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Magnetoencefalografia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Memória de Curto Prazo/fisiologia
7.
Front Neurosci ; 16: 829415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516796

RESUMO

Background: Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods: Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results: Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula. Conclusion: Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.

8.
Front Neurol ; 13: 850590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481264

RESUMO

Objective: Concussion is a common yet heterogenous injury. Approximately 15-30% of cases present with persistent post-concussion symptoms (PPCS), continuing 4 weeks or more post-injury in children, youth, and adolescents, and 3 months or more in adults. There are known bidirectional links between PPCS and mental health outcomes. The focus of this scoping review is to explore the literature on mental health outcomes in individuals experiencing PPCS. Research objectives were to explore: (1) the mental health outcomes of individuals with PPCS and types of assessments used to identify mental health outcomes this group, and (2) how mental health outcomes compare in terms of similarities and differences among pediatric and adult populations with PPCS. Method: Ovid MEDLINE; EMBASE; CINAHL, and PsycInfo databases were searched. After title and abstract screening of 11,920 studies, 481 articles were reviewed. Twenty-five papers met inclusion criteria. Results were organized by mental health outcomes of pediatric and adult populations, separately. Results: There was a significantly higher number of studies devoted to adult populations. Of the 25 studies, 19 (76%) focused on adults, while six (24%) focused on adolescents. In adult populations, studies focused on symptoms of: anxiety (n = 2), depression (n = 8), and anxiety and depression (n = 9). Two studies assessed other emotional outcomes (10.5%). Within pediatric populations, an equal number of studies explored symptoms of: anxiety (n = 2), depression (n = 2), and anxiety and depression (n = 2). No studies focused on other emotional outcomes. Studies ranged greatly in methods, design, and control group. Most studies reported higher psychiatric symptoms of anxiety and/or depression in those with PPCS compared to individuals with recovered concussion or healthy controls. Discussion: This review contributes to the understanding of mental health outcomes in those experiencing PPCS. Mental health and PPCS requires greater attention in pediatric populations, and consider strategies for those experiencing PPCS and mental health impacts. Future studies should consider including a wider range of emotional outcomes in their design, not limited to anxiety and depression. Study results may lead to improvements and research in the identification, assessment, and management of PPCS and mental health.

9.
Pain ; 163(7): 1291-1302, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711764

RESUMO

ABSTRACT: Alpha oscillatory activity (8-13 Hz) is the dominant rhythm in the awake brain and is known to play an important role in pain states. Previous studies have identified alpha band slowing and increased power in the dynamic pain connectome (DPC) of people with chronic neuropathic pain. However, a link between alpha-band abnormalities and sex differences in brain organization in healthy individuals and those with chronic pain is not known. Here, we used resting-state magnetoencephalography to test the hypothesis that peak alpha frequency (PAF) abnormalities are general features across chronic central and peripheral conditions causing neuropathic pain but exhibit sex-specific differences in networks of the DPC (ascending nociceptive pathway [ANP], default mode network, salience network [SN], and subgenual anterior cingulate cortex). We found that neuropathic pain (N = 25 men and 25 women) was associated with increased PAF power in the DPC compared with 50 age- and sex-matched healthy controls, whereas slower PAF in nodes of the SN (temporoparietal junction) and the ANP (posterior insula) was associated with higher trait pain intensity. In the neuropathic pain group, women exhibited lower PAF power in the subgenual anterior cingulate cortex and faster PAF in the ANP and SN than men. The within-sex analyses indicated that women had neuropathic pain-related increased PAF power in the ANP, SN, and default mode network, whereas men with neuropathic pain had increased PAF power restricted to the ANP. These findings highlight neuropathic pain-related and sex-specific abnormalities in alpha oscillations across the DPC that could underlie aberrant neuronal communication in nociceptive processing and modulation.


Assuntos
Neuralgia , Caracteres Sexuais , Feminino , Humanos , Masculino , Ritmo alfa , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Neuralgia/diagnóstico por imagem , Preparações Farmacêuticas
10.
Soc Cogn Affect Neurosci ; 17(4): 377-386, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34654932

RESUMO

Very preterm (VPT: ≤32 weeks of gestational age) birth poses an increased risk for social and cognitive morbidities that persist throughout life. Resting-state functional network connectivity studies provide information about the intrinsic capacity for cognitive processing. We studied the following four social-cognitive resting-state networks: the default mode, salience, frontal-parietal and language networks. We examined functional connectivity using magnetoencephalography with individual head localization using each participant's MRI at 6 (n = 40) and 8 (n = 40) years of age compared to age- and sex-matched full-term (FT) born children (n = 38 at 6 years and n = 43 at 8 years). VPT children showed increased connectivity compared to FT children in the gamma band (30-80 Hz) at 6 years within the default mode network (DMN), and between the DMN and the salience, frontal-parietal and language networks, pointing to more diffuse, less segregated processing across networks at this age. At 8 years, VPT children had more social and academic difficulties. Increased DMN connectivity at 6 years was associated with social and working memory difficulties at 8 years. Therefore, we suggest that increased DMN connectivity contributes to the observed emerging social and cognitive morbidities in school age.


Assuntos
Encéfalo , Lactente Extremamente Prematuro , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Cognição , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Magnetoencefalografia
11.
Front Neurol ; 12: 751736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858314

RESUMO

Objective: To summarize existing knowledge about the characteristics of attention problems secondary to traumatic brain injuries (TBI) of all severities in children. Methods: Computerized databases PubMed and PsychINFO and gray literature sources were used to identify relevant studies. Search terms were selected to identify original research examining new ADHD diagnosis or attention problems after TBI in children. Studies were included if they investigated any severity of TBI, assessed attention or ADHD after brain injury, investigated children as a primary or sub-analysis, and controlled for or excluded participants with preinjury ADHD or attention problems. Results: Thirty-nine studies were included in the review. Studies examined the prevalence of and risk factors for new attention problems and ADHD following TBI in children as well as behavioral and neuropsychological factors associated with these attention problems. Studies report a wide range of prevalence rates of new ADHD diagnosis or attention problems after TBI. Evidence indicates that more severe injury, injury in early childhood, or preinjury adaptive functioning problems, increases the risk for new ADHD and attention problems after TBI and both sexes appear to be equally vulnerable. Further, literature suggests that cases of new ADHD often co-occurs with neuropsychiatric impairment in other domains. Identified gaps in our understanding of new attention problems and ADHD include if mild TBI, the most common type of injury, increases risk and what brain abnormalities are associated with the emergence of these problems. Conclusion: This scoping review describes existing studies of new attention problems and ADHD following TBI in children and highlights important risk factors and comorbidities. Important future research directions are identified that will inform the extent of this outcome across TBI severities, its neural basis and points of intervention to minimize its impact.

12.
Neuroimage Clin ; 32: 102841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34653838

RESUMO

Mild traumatic brain injury (mTBI) poses a considerable burden on healthcare systems. Whilst most patients recover quickly, a significant number suffer from sequelae that are not accompanied by measurable structural damage. Understanding the neural underpinnings of these debilitating effects and developing a means to detect injury, would address an important unmet clinical need. It could inform interventions and help predict prognosis. Magnetoencephalography (MEG) affords excellent sensitivity in probing neural function and presents significant promise for assessing mTBI, with abnormal neural oscillations being a potential specific biomarker. However, growing evidence suggests that neural dynamics are (at least in part) driven by transient, pan-spectral bursting and in this paper, we employ this model to investigate mTBI. We applied a Hidden Markov Model to MEG data recorded during resting state and a motor task and show that previous findings of diminished intrinsic beta amplitude in individuals with mTBI are largely due to the reduced beta band spectral content of bursts, and that diminished beta connectivity results from a loss in the temporal coincidence of burst states. In a motor task, mTBI results in diminished burst amplitude, altered modulation of burst probability during movement, and a loss in connectivity in motor networks. These results suggest that, mechanistically, mTBI disrupts the structural framework underlying neural synchrony, which impairs network function. Whilst the damage may be too subtle for structural imaging to see, the functional consequences are detectable and persist after injury. Our work shows that mTBI impairs the dynamic coordination of neural network activity and proposes a potent new method for understanding mTBI.


Assuntos
Concussão Encefálica , Encéfalo/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia
13.
Cereb Cortex ; 32(1): 29-40, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34255825

RESUMO

The neural mechanisms that underlie selective attention in children are poorly understood. By administering a set-shifting task to children with intracranial electrodes stereotactically implanted within anterior cingulate cortex (ACC) for epilepsy monitoring, we demonstrate that selective attention in a set-shifting task is dependent upon theta-band phase resetting immediately following stimulus onset and that the preferred theta phase angle is predictive of reaction time during attentional shift. We also observe selective enhancement of oscillatory coupling between the ACC and the dorsal attention network and decoupling with the default mode network during task performance. When transient focal epileptic activity occurs around the time of stimulus onset, phase resetting is impaired, connectivity changes with attentional and default mode networks are abolished, and reaction times are prolonged. The results of the present work highlight the fundamental mechanistic role of oscillatory phase in ACC in supporting attentional circuitry and present novel opportunities to remediate attention deficits in children with epilepsy.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Epilepsia , Criança , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética
14.
Brain Commun ; 3(2): fcab044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095832

RESUMO

Mild traumatic brain injury is highly prevalent in paediatric populations, and can result in chronic physical, cognitive and emotional impairment, known as persistent post-concussive symptoms. Magnetoencephalography has been used to investigate neurophysiological dysregulation in mild traumatic brain injury in adults; however, whether neural dysrhythmia persists in chronic mild traumatic brain injury in children and adolescents is largely unknown. We predicted that children and adolescents would show similar dysfunction as adults, including pathological slow-wave oscillations and maladaptive, frequency-specific, alterations to neural connectivity. Using magnetoencephalography, we investigated regional oscillatory power and distributed brain-wide networks in a cross-sectional sample of children and adolescents in the chronic stages of mild traumatic brain injury. Additionally, we used a machine learning pipeline to identify the most relevant magnetoencephalography features for classifying mild traumatic brain injury and to test the relative classification performance of regional power versus functional coupling. Results revealed that the majority of participants with chronic mild traumatic brain injury reported persistent post-concussive symptoms. For neurophysiological imaging, we found increased regional power in the delta band in chronic mild traumatic brain injury, predominantly in bilateral occipital cortices and in the right inferior temporal gyrus. Those with chronic mild traumatic brain injury also showed dysregulated neuronal coupling, including decreased connectivity in the delta range, as well as hyper-connectivity in the theta, low gamma and high gamma bands, primarily involving frontal, temporal and occipital brain areas. Furthermore, our multivariate classification approach combined with functional connectivity data outperformed regional power in terms of between-group classification accuracy. For the first time, we establish that local and large-scale neural activity are altered in youth in the chronic phase of mild traumatic brain injury, with the majority presenting persistent post-concussive symptoms, and that dysregulated interregional neural communication is a reliable marker of lingering paediatric 'mild' traumatic brain injury.

15.
Transl Psychiatry ; 11(1): 345, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088901

RESUMO

Post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are highly prevalent and closely related disorders. Affected individuals often exhibit substantially overlapping symptomatology - a major challenge for differential diagnosis in both military and civilian contexts. According to our symptom assessment, the PTSD group exhibited comparable levels of concussion symptoms and severity to the mTBI group. An objective and reliable system to uncover the key neural signatures differentiating these disorders would be an important step towards translational and applied clinical use. Here we explore use of MEG (magnetoencephalography)-multivariate statistical learning analysis in identifying the neural features for differential PTSD/mTBI characterisation. Resting state MEG-derived regional neural activity and coherence (or functional connectivity) across seven canonical neural oscillation frequencies (delta to high gamma) were used. The selected features were consistent and largely confirmatory with previously established neurophysiological markers for the two disorders. For regional power from theta, alpha and high gamma bands, the amygdala, hippocampus and temporal areas were identified. In line with regional activity, additional connections within the occipital, parietal and temporal regions were selected across a number of frequency bands. This study is the first to employ MEG-derived neural features to reliably and differentially stratify the two disorders in a multi-group context. The features from alpha and beta bands exhibited the best classification performance, even in cases where distinction by concussion symptom profiles alone were extremely difficult. We demonstrate the potential of using 'invisible' neural indices of brain functioning to understand and differentiate these debilitating conditions.


Assuntos
Concussão Encefálica , Militares , Transtornos de Estresse Pós-Traumáticos , Encéfalo , Concussão Encefálica/diagnóstico , Hipocampo , Humanos , Magnetoencefalografia , Transtornos de Estresse Pós-Traumáticos/diagnóstico
16.
Neuroimage Clin ; 31: 102697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010785

RESUMO

BACKGROUND: The global incidence of traumatic brain injuries is rising, with at least 80% being classified as mild. These mild injuries are not visible on routine clinical imaging. The potential clinical role of a specific imaging biomarker be it diagnostic, prognostic or directing and monitoring progress of personalised treatment and rehabilitation has driven the exploration of several new neuroimaging modalities. This systematic review examined the evidence for magnetoencephalography (MEG) to provide an imaging biomarker in mild traumatic brain injury (mTBI). METHODS: Our review was prospectively registered on PROSPERO: CRD42019151387. We searched EMBASE, MEDLINE, trial registers, PsycINFO, Cochrane Library and conference abstracts and identified 37 papers describing MEG changes in mTBI eligible for inclusion. Since meta-analysis was not possible, based on the heterogeneity of reported outcomes, we provide a narrative synthesis of results. RESULTS: The two most promising MEG biomarkers are excess resting state low frequency power, and widespread connectivity changes in all frequency bands. These may represent biomarkers with potential for diagnostic application, which reflect time sensitive changes, or may be capable of offering clinically relevant prognostic information. In addition, the rich data that MEG produces are well-suited to new methods of machine learning analysis, which is now being actively explored. INTERPRETATION: MEG reveals several promising biomarkers, in the absence of structural abnormalities demonstrable with either computerised tomography or magnetic resonance imaging. This review has not identified sufficient evidence to support routine clinical use of MEG in mTBI currently. However, verifying MEG's potential would help meet an urgent clinical need within civilian, sports and military medicine.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Adulto , Encéfalo , Concussão Encefálica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia
17.
Sci Rep ; 11(1): 8611, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883578

RESUMO

Previous neuroimaging studies have shown that inferior parietal and ventral occipital cortex are involved in the transsaccadic processing of visual object orientation. Here, we investigated whether the same areas are also involved in transsaccadic processing of a different feature, namely, spatial frequency. We employed a functional magnetic resonance imaging paradigm where participants briefly viewed a grating stimulus with a specific spatial frequency that later reappeared with the same or different frequency, after a saccade or continuous fixation. First, using a whole-brain Saccade > Fixation contrast, we localized two frontal (left precentral sulcus and right medial superior frontal gyrus), four parietal (bilateral superior parietal lobule and precuneus), and four occipital (bilateral cuneus and lingual gyri) regions. Whereas the frontoparietal sites showed task specificity, the occipital sites were also modulated in a saccade control task. Only occipital cortex showed transsaccadic feature modulations, with significant repetition enhancement in right cuneus. These observations (parietal task specificity, occipital enhancement, right lateralization) are consistent with previous transsaccadic studies. However, the specific regions differed (ventrolateral for orientation, dorsomedial for spatial frequency). Overall, this study supports a general role for occipital and parietal cortex in transsaccadic vision, with a specific role for cuneus in spatial frequency processing.


Assuntos
Lobo Occipital/fisiologia , Movimentos Sacádicos/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Parietal/fisiologia , Adulto Jovem
18.
Neurobiol Stress ; 14: 100299, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33659579

RESUMO

Post-traumatic stress disorder (PTSD) is a prevalent psychiatric disorder, particularly among military personnel and veterans. Cortical gyrification, as a specific metric derived from structural MRI, is an index of the convoluted folding and patterning of the gyri and sulci, and is thought to facilitate the efficiency of local neuronal wiring. It has the potential to act as a neurobiological risk factor for emergent psychiatric disorders - to date, it has been understudied in PTSD. Here, using a local measure of the degree of gyrification (local Gyrification Index, lGI) we investigate cortical gyrification morphology in 48 adult male soldiers with (n = 23) and without (n = 25) a PTSD diagnosis. We also examine the relation between lGI and PTSD severity within the PTSD group. General linear models yielded significant between-group differences with greater lGI found in PTSD in a cluster located in the medial occipito-parietal lobe on the left hemisphere and reduced lGI in a cluster located on the lateral surface of the parietal lobe on the right hemisphere. Brain-behaviour analyses within the PTSD group yielded significant positive associations between lGI and PTSD severity in a cluster located in the frontal cortex of the left hemisphere and scattered clusters located within all lobes of the right hemisphere. After accounting for the effects of comorbid psychiatric symptoms common in PTSD, the associations in the right hemisphere reduced to clusters only located in the frontal lobe, while the cluster in the left hemisphere remained significant. Our results suggest that atypical cortical gyrification in parietal and occipital regions may be implicated in the psychopathology of PTSD diagnosis, and properties of prefrontal gyrification associated with the emergent severity of PTSD after trauma. The importance of these regions in PTSD may be attributed to a pre-existing neurobiological risk factor, or neuromorphological changes after trauma precipitating emergent psychiatric illness. Our brain-behaviour relations provide support for the existing literature by highlighting the importance of the frontal lobe in the pathogenesis of PTSD. Future large-scale longitudinal studies including female participants may infer causal implications of atypical gyrification in PTSD and shed light on the potential effect of sex on this brain metric.

19.
Hum Brain Mapp ; 42(3): 598-614, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068500

RESUMO

Neural dynamics can shape human experience, including pain. Pain has been linked to dynamic functional connectivity within and across brain regions of the dynamic pain connectome (consisting of the ascending nociceptive pathway (Asc), descending antinociceptive pathway (Desc), salience network (SN), and the default mode network (DMN)), and also shows sex differences. These linkages are based on fMRI-derived slow hemodynamics. Here, we utilized the fine temporal resolution of magnetoencephalography (MEG) to measure resting state functional coupling (FCp) related to individual pain perception and pain interference in 50 healthy individuals (26 women, 24 men). We found that pain sensitivity and pain interference were linked to within- and cross-network broadband FCp across the Asc and SN. We also identified sex differences in these relationships: (a) women exhibited greater within-network static FCp, whereas men had greater dynamic FCp within the dynamic pain connectome; (b) relationship between pain sensitivity and pain interference with FCp in women was commonly found in theta, whereas in men, these relationships were predominantly in the beta and low gamma bands. These findings indicate that dynamic interactions of brain networks underlying pain involve fast brain communication in men but slower communication in women.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Magnetoencefalografia , Rede Nervosa/fisiologia , Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Estimulação Elétrica , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Caracteres Sexuais , Adulto Jovem
20.
Neuroimage ; 225: 117524, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33147510

RESUMO

Examining the brain at rest is a powerful approach used to understand the intrinsic properties of typical and disordered human brain function, yet task-free paradigms are associated with greater head motion, particularly in young and/or clinical populations such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Inscapes, a non-social and non-verbal movie paradigm, has been introduced to increase attention, thus mitigating head motion, while reducing the task-induced activations found during typical movie watching. Inscapes has not yet been validated for use in magnetoencephalography (MEG), and it has yet to be shown whether its effects are stable in clinical populations. Across typically developing (N = 32) children and adolescents and those with ASD (N = 46) and ADHD (N = 42), we demonstrate that head motion is reduced during Inscapes. Due to the task state evoked by movie paradigms, we also expectedly observed concomitant modulations in local neural activity (oscillatory power) and functional connectivity (phase and envelope coupling) in intrinsic resting-state networks and across the frequency spectra compared to a fixation cross resting-state. Increases in local activity were accompanied by decreases in low-frequency connectivity within and between resting-state networks, primarily the visual network, suggesting that task-state evoked by Inscapes moderates ongoing and spontaneous cortical inhibition that forms the idling intrinsic networks found during a fixation cross resting-state. Importantly, these effects were similar in ASD and ADHD, making Inscapes a well-suited advancement for investigations of resting brain function in young and clinical populations.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Atenção , Transtorno do Espectro Autista/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Neuroimagem Funcional/métodos , Magnetoencefalografia/métodos , Estimulação Luminosa/métodos , Vias Visuais/diagnóstico por imagem , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Espectro Autista/fisiopatologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Rede de Modo Padrão/fisiopatologia , Feminino , Humanos , Masculino , Filmes Cinematográficos , Movimento , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Cooperação do Paciente , Reprodutibilidade dos Testes , Descanso , Vias Visuais/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA