RESUMO
In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.
Assuntos
Neoplasias da Mama , Isoflavonas , Trifolium , Feminino , Humanos , Trifolium/química , Trifolium/metabolismo , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Estrogênios , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias da Mama/tratamento farmacológicoRESUMO
Botanical dietary supplements (BDS) containing hops are sold as women's health supplements due to the potent hop phytoestrogen, 8-prenylnaringenin (8-PN), and the cytoprotective chalcone, xanthohumol. Previous studies have shown a standardized hop extract to beneficially influence chemical estrogen carcinogenesis in vitro by fostering detoxified 2-hydroxylation over genotoxic 4-hydroxylation estrogen metabolism. In this study, hop extract and its bioactive compounds were investigated for its mechanism of action within the chemical estrogen carcinogenesis pathway, which is mainly mediated through the 4-hydroxylation pathway catalyzed by CYP1B1 that can form gentoxic quinones. Aryl hydrocarbon receptor (AhR) agonists induce CYP1A1 and CYP1B1, while estrogen receptor alpha (ERα) inhibits transcription of CYP1A1, the enzyme responsible for 2-hydroxylated estrogens and the estrogen detoxification pathway. An In-Cell Western MCF-7 cell assay revealed hop extract and 6-prenylnaringenin (6-PN) degraded ERα via an AhR-dependent mechanism. Reverse transcription PCR and xenobiotic response element luciferase assays showed hop extract and 6-PN-mediated activation of AhR and induction of CYP1A1. A reduction in estrogen-mediated DNA (cytosine-5)-methyltransferase 1 (DNMT1) downregulation of CYP1A1 accompanied this activity in a chromatin immunoprecipitation assay. Ultimately, hop extract and 6-PN induced preferential metabolism of estrogens to their detoxified form in vitro. These results suggest that the standardized hop extract and 6-PN activate AhR to attenuate epigenetic inhibition of CYP1A1 through degradation of ERα, ultimately increasing 2-hydroxylated estrogens. A new mechanism of action rationalizes the positive influence of hop BDS and 6-PN on oxidative estrogen metabolism in vitro and, thus, potentially on chemical estrogen carcinogenesis. The findings underscore the importance of elucidating various biological mechanisms of action and standardizing BDS to multiple phytoconstituents for optimal resilience promoting properties.
Assuntos
Citocromo P-450 CYP1A1/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios/efeitos adversos , Flavonoides/farmacologia , Humulus/química , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Células Tumorais CultivadasRESUMO
Botanical dietary supplements for women's health are increasingly popular. Older women tend to take botanical supplements such as hops as natural alternatives to traditional hormone therapy to relieve menopausal symptoms. Especially extracts from spent hops, the plant material remaining after beer brewing, are enriched in bioactive prenylated flavonoids that correlate with the health benefits of the plant. The chalcone xanthohumol (XH) is the major prenylated flavonoid in spent hops. Other less abundant but important bioactive prenylated flavonoids are isoxanthohumol (IX), 8-prenylnaringenin (8-PN), and 6-prenylnaringenin (6-PN). Pharmacokinetic studies revealed that these flavonoids are conjugated rapidly with glucuronic acid. XH also undergoes phase I metabolism in vivo to form IX, 8-PN, and 6-PN. Several hop constituents are responsible for distinct effects linked to multiple biological targets, including hormonal, metabolic, inflammatory, and epigenetic pathways. 8-PN is one of the most potent phytoestrogens and is responsible for hops' estrogenic activities. Hops also inhibit aromatase activity, which is linked to 8-PN. The weak electrophile, XH, can activate the Keap1-Nrf2 pathway and turn on the synthesis of detoxification enzymes such as NAD(P)H-quinone oxidoreductase 1 and glutathione S-transferase. XH also alkylates IKK and NF-κB, resulting in anti-inflammatory activity. Antiobesity activities have been described for XH and XH-rich hop extracts likely through activation of AMP-activated protein kinase signaling pathways. Hop extracts modulate the estrogen chemical carcinogenesis pathway by enhancing P450 1A1 detoxification. The mechanism appears to involve activation of the aryl hydrocarbon receptor (AhR) by the AhR agonist, 6-PN, leading to degradation of the estrogen receptor. Finally, prenylated phenols from hops are known inhibitors of P450 1A1/2; P450 1B1; and P450 2C8, 2C9, and 2C19. Understanding the biological targets of hop dietary supplements and their phytoconstituents will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
Assuntos
Flavonoides/química , Humulus/química , Proteínas Quinases Ativadas por AMP/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Feminino , Flavonoides/metabolismo , Flavonoides/farmacologia , Humanos , Humulus/metabolismo , Extratos Vegetais/química , Receptores de Hidrocarboneto Arílico/química , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Women are increasingly using botanical dietary supplements (BDS) to reduce menopausal hot flashes. Although licorice (Glycyrrhiza sp.) is one of the frequently used ingredients in BDS, the exact plant species is often not identified. We previously showed that in breast epithelial cells (MCF-10A), Glycyrrhiza glabra (GG) and G. inflata (GI), and their compounds differentially modulated P450 1A1 and P450 1B1 gene expression, which are responsible for estrogen detoxification and genotoxicity, respectively. GG and isoliquiritigenin (LigC) increased CYP1A1, whereas GI and its marker compound, licochalcone A (LicA), decreased CYP1A1 and CYP1B1 The objective of this study was to determine the distribution of the bioactive licorice compounds, the metabolism of LicA, and whether GG, GI, and/or pure LicA modulate NAD(P)H quinone oxidoreductase (NQO1) in an ACI rat model. In addition, the effect of licorice extracts and compounds on biomarkers of estrogen chemoprevention (CYP1A1) as well as carcinogenesis (CYP1B1) was studied. LicA was extensively glucuronidated and formed GSH adducts; however, free LicA as well as LigC were bioavailable in target tissues after oral intake of licorice extracts. GG, GI, and LicA caused induction of NQO1 activity in the liver. In mammary tissue, GI increased CYP1A1 and decreased CYP1B1, whereas GG only increased CYP1A1 LigC may have contributed to the upregulation of CYP1A1 after GG and GI administration. In contrast, LicA was responsible for GI-mediated downregulation of CYP1B1 These studies highlight the polypharmacologic nature of botanicals and the importance of standardization of licorice BDS to specific Glycyrrhiza species and to multiple constituents.
Assuntos
Suplementos Nutricionais , Estrogênios/metabolismo , Glycyrrhiza/química , Extratos Vegetais/administração & dosagem , Administração Oral , Animais , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Feminino , Fogachos/dietoterapia , Fígado/metabolismo , Fígado/patologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Modelos Animais , NAD(P)H Desidrogenase (Quinona)/metabolismo , Extratos Vegetais/farmacocinética , Extratos Vegetais/normas , Ratos , Ratos Endogâmicos ACI , Distribuição Tecidual , Regulação para Cima , Útero/metabolismo , Útero/patologiaRESUMO
The formation of o-quinones from direct 2-electron oxidation of catechols and/or two successive one electron oxidations could explain the cytotoxic/genotoxic and/or chemopreventive effects of several phenolic botanical extracts. For example, poison ivy contains urushiol, an oily mixture, which is oxidized to various o-quinones likely resulting in skin toxicity through oxidative stress and alkylation mechanisms resulting in immune responses. Green tea contains catechins which are directly oxidized to o-quinones by various oxidative enzymes. Alternatively, phenolic botanicals could be o-hydroxylated by P450 to form catechols in vivo which are oxidized to o-quinones. Examples include, resveratrol which is oxidized to piceatannol and further oxidized to the o-quinone. Finally, botanical o-quinones can be formed by O-dealkylation of O-alkoxy groups or methylenedioxy rings resulting in catechols which are further oxidized to o-quinones. Examples include safrole, eugenol, podophyllotoxin and etoposide, as well as methysticin. Once formed these o-quinones have a variety of biological targets in vivo resulting in various biological effects ranging from chemoprevention ->â¯no effect ->â¯toxicity. This U-shaped biological effect curve has been described for a number of reactive intermediates including o-quinones. The current review summarizes the latest data on the formation and biological targets of botanical o-quinones.
Assuntos
Plantas/química , Quinonas/síntese química , Quinonas/farmacologia , Ativação Metabólica , Alquilação , DNA/química , Glutationa/química , Hidroxilação , Oxirredução , Proteínas/química , Quinonas/químicaRESUMO
Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women's health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE1, 4-MeOE1) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 µg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE1/CYP1B1 > 2-MeOE1/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE1. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in "normal" vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast cancer patients should avoid red clover and isoflavone based BDSs when making choices for menopausal symptom relief.
Assuntos
Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Suplementos Nutricionais/efeitos adversos , Estrogênios/metabolismo , Isoflavonas/efeitos adversos , Receptores de Hidrocarboneto Arílico/metabolismo , Trifolium/metabolismo , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/genética , Carcinogênese/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Suplementos Nutricionais/análise , Feminino , Humanos , Isoflavonas/análise , Isoflavonas/metabolismo , Células MCF-7RESUMO
Quinones represent a class of toxicological intermediates, which can create a variety of hazardous effects in vivo including, acute cytotoxicity, immunotoxicity, and carcinogenesis. In contrast, quinones can induce cytoprotection through the induction of detoxification enzymes, anti-inflammatory activities, and modification of redox status. The mechanisms by which quinones cause these effects can be quite complex. The various biological targets of quinones depend on their rate and site of formation and their reactivity. Quinones are formed through a variety of mechanisms from simple oxidation of catechols/hydroquinones catalyzed by a variety of oxidative enzymes and metal ions to more complex mechanisms involving initial P450-catalyzed hydroxylation reactions followed by two-electron oxidation. Quinones are Michael acceptors, and modification of cellular processes could occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radical anions leading to the formation of reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can alter redox balance within cells through the formation of oxidized cellular macromolecules including lipids, proteins, and DNA. This perspective explores the varied biological targets of quinones including GSH, NADPH, protein sulfhydryls [heat shock proteins, P450s, cyclooxygenase-2 (COX-2), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1, (NQO1), kelch-like ECH-associated protein 1 (Keap1), IκB kinase (IKK), and arylhydrocarbon receptor (AhR)], and DNA. The evidence strongly suggests that the numerous mechanisms of quinone modulations (i.e., alkylation versus oxidative stress) can be correlated with the known pathology/cytoprotection of the parent compound(s) that is best described by an inverse U-shaped dose-response curve.
Assuntos
Citoproteção , Citotoxinas , Quinonas , Animais , Citotoxinas/química , Citotoxinas/farmacologia , Citotoxinas/toxicidade , Humanos , Quinonas/química , Quinonas/farmacologia , Quinonas/toxicidadeRESUMO
Botanical dietary supplements are increasingly popular for women's health, particularly for older women. The specific botanicals women take vary as a function of age. Younger women will use botanicals for urinary tract infections, especially Vaccinium macrocarpon (cranberry), where there is evidence for efficacy. Botanical dietary supplements for premenstrual syndrome (PMS) are less commonly used, and rigorous clinical trials have not been done. Some examples include Vitex agnus-castus (chasteberry), Angelica sinensis (dong quai), Viburnum opulus/prunifolium (cramp bark and black haw), and Zingiber officinale (ginger). Pregnant women have also used ginger for relief from nausea. Natural galactagogues for lactating women include Trigonella foenum-graecum (fenugreek) and Silybum marianum (milk thistle); however, rigorous safety and efficacy studies are lacking. Older women suffering menopausal symptoms are increasingly likely to use botanicals, especially since the Women's Health Initiative showed an increased risk for breast cancer associated with traditional hormone therapy. Serotonergic mechanisms similar to antidepressants have been proposed for Actaea/Cimicifuga racemosa (black cohosh) and Valeriana officinalis (valerian). Plant extracts with estrogenic activities for menopausal symptom relief include Glycine max (soy), Trifolium pratense (red clover), Pueraria lobata (kudzu), Humulus lupulus (hops), Glycyrrhiza species (licorice), Rheum rhaponticum (rhubarb), Vitex agnus-castus (chasteberry), Linum usitatissimum (flaxseed), Epimedium species (herba Epimedii, horny goat weed), and Medicago sativa (alfalfa). Some of the estrogenic botanicals have also been shown to have protective effects against osteoporosis. Several of these botanicals could have additional breast cancer preventive effects linked to hormonal, chemical, inflammatory, and/or epigenetic pathways. Finally, although botanicals are perceived as natural safe remedies, it is important for women and their healthcare providers to realize that they have not been rigorously tested for potential toxic effects and/or drug/botanical interactions. Understanding the mechanism of action of these supplements used for women's health will ultimately lead to standardized botanical products with higher efficacy, safety, and chemopreventive properties.
RESUMO
Electrophilic reactive intermediates resulting from drug metabolism have been associated with toxicity and off-target effects and in some drug discovery programs trigger NO-GO decisions. Many botanicals and dietary supplements are replete with such reactive electrophiles, notably Michael acceptors, which have been demonstrated to elicit chemopreventive mechanisms; and Michael acceptors are gaining regulatory approval as contemporary cancer therapeutics. Identifying protein targets of these electrophiles is central to understanding potential therapeutic benefit and toxicity risk. NO-donating NSAID prodrugs (NO-NSAIDs) have been the focus of extensive clinical and preclinical studies in inflammation and cancer chemoprevention and therapy: a subset exemplified by pNO-ASA, induces chemopreventive mechanisms following bioactivation to an electrophilic quinone methide (QM) Michael acceptor. Having previously shown that these NO-independent, QM-donors activated Nrf2 via covalent modification of Keap-1, we demonstrate that components of canonical NF-κB signaling are also targets, leading to the inhibition of NF-κB signaling. Combining bio-orthogonal probes of QM-donor ASA prodrugs with mass spectrometric proteomics and pathway analysis, we proceeded to characterize the quinonome: the protein cellular targets of QM-modification by pNO-ASA and its ASA pro-drug congeners. Further comparison was made using a biorthogonal probe of the "bare-bones", Michael acceptor, and clinical anti-inflammatory agent, dimethyl fumarate, which we have shown to inhibit NF-κB signaling. Identified quinonome pathways include post-translational protein folding, cell-death regulation, protein transport, and glycolysis; and identified proteins included multiple heat shock elements, the latter functionally confirmed by demonstrating activation of heat shock response.
Assuntos
NF-kappa B/metabolismo , Pró-Fármacos/farmacocinética , Quinonas/farmacocinética , Ativação Metabólica , Células HT29 , Humanos , Espectrometria de Massas , Fator 2 Relacionado a NF-E2/metabolismo , Proteômica , Teoria QuânticaRESUMO
Humulus lupulus L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE1) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin O-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of standardization of botanical extracts to multiple chemical markers for both safety and desired bioactivity.
Assuntos
Citocromo P-450 CYP1A1/biossíntese , Estrogênios/metabolismo , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Feminino , Humanos , Humulus/química , Hidroxilação , RNA Mensageiro/genéticaRESUMO
Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E1/E2) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by upregulating P450 1B1. The present study tested the three authenticated medicinal species of licorice [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)] used by women as dietary supplements for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI-specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI â« GG > GU and LigC â LicA â« LigF. The Michael acceptor chalcone, LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE1 as nontoxic and 4-MeOE1 as genotoxic biomarkers in the nontumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE1, whereas GI and LicA inhibited 2- and 4-MeOE1 levels. GG, GU (5 µg/mL), and LigC (1 µM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-γ). LicA (1, 10 µM) decreased cytokine- and TCDD-induced P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC50 = 12.3 µM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 µg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that, of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women's health. Additionally, the differential effects of the Glycyrrhiza species on estrogen metabolism emphasize the importance of standardization of botanical supplements to species-specific bioactive compounds.
Assuntos
Neoplasias da Mama , Chalconas/farmacologia , Citocromo P-450 CYP1A1/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glycyrrhiza/química , Cromatografia Líquida , Citocromo P-450 CYP1A1/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Macrófagos/citologia , Modelos Biológicos , Preparações de Plantas/farmacologia , Especificidade da Espécie , Regulação para Cima/efeitos dos fármacosRESUMO
The promising therapeutic potential of the NO-donating hybrid aspirin prodrugs (NO-ASA) includes induction of chemopreventive mechanisms and has been reported in almost 100 publications. One example, NCX-4040 (pNO-ASA), is bioactivated by esterase to a quinone methide (QM) electrophile. In cell cultures, pNO-ASA and QM-donating X-ASA prodrugs that cannot release NO rapidly depleted intracellular GSH and caused DNA damage; however, induction of Nrf2 signaling elicited cellular defense mechanisms including upregulation of NAD(P)H:quinone oxidoreductase-1 (NQO1) and glutamate-cysteine ligase (GCL). In HepG2 cells, the "NO-specific" 4,5-diaminofluorescein reporter, DAF-DA, responded to NO-ASA and X-ASA, with QM-induced oxidative stress masquerading as NO. LC-MS/MS analysis demonstrated efficient alkylation of Cys residues of proteins including glutathione-S-transferase-P1 (GST-P1) and Kelch-like ECH-associated protein 1 (Keap1). Evidence was obtained for alkylation of Keap1 Cys residues associated with Nrf2 translocation to the nucleus, nuclear translocation of Nrf2, activation of antioxidant response element (ARE), and upregulation of cytoprotective target genes. At least in cell culture, pNO-ASA acts as a QM donor, bioactivated by cellular esterase activity to release salicylates, NO(3)(-), and an electrophilic QM. Finally, two novel aspirin prodrugs were synthesized, both potent activators of ARE, designed to release only the QM and salicylates on bioactivation. Current interest in electrophilic drugs acting via Nrf2 signaling suggests that QM-donating hybrid drugs can be designed as informative chemical probes in drug discovery.
Assuntos
Aspirina/análogos & derivados , Aspirina/farmacologia , Indolquinonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Pró-Fármacos/farmacologia , Animais , Linhagem Celular Tumoral , Dano ao DNA , Glutationa/metabolismo , Glutationa S-Transferase pi/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos , NAD(P)H Desidrogenase (Quinona)/metabolismo , Óxido Nítrico/metabolismoRESUMO
Properties of the NO-ASA family of NO-donating NSAIDs (NO-NSAIDs), notably NCX 4016 (mNO-ASA) and NCX 4040 (pNO-ASA), reported in more than one hundred publications, have included positive preclinical data in cancer chemoprevention and therapy. Evidence is presented that the antiproliferative, the chemopreventive (antioxidant/electrophile response element (ARE) activation), and the anti-inflammatory activity of NO-ASA in cell cultures is replicated by X-ASA derivatives that are incapable of acting as NO donors. pBr-ASA and mBr-ASA are conisogenic with NO-ASA, but are not NO donors. The biological activity of pNO-ASA is replicated by pBr-ASA; and both pNO-ASA and pBr-ASA are bioactivated to the same quinone methide electrophile. The biological activity of mNO-ASA is replicated by mBr-ASA; mNO-ASA and mBr-ASA are bioactivated to different benzyl electrophiles. The observed activity is likely initiated by trapping of thiol biomolecules by the quinone and benzyl electrophiles, leading to depletion of GSH and modification of Cys-containing sensor proteins. Whereas all NO-NSAIDs containing the same structural "linker" as NCX 4040 and NCX 4016 are anticipated to possess activity resulting from bioactivation to electrophilic metabolites, this expectation does not extend to other linker structures. Nitrates require metabolic bioactivation to liberate NO bioactivity, which is often poorly replicated in vitro, and NO bioactivity provided by NO-NSAIDs in vivo provides proven therapeutic benefits in mitigation of NSAID gastrotoxicity. The in vivo properties of X-ASA drugs await discovery.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Neoplasias/prevenção & controle , Doadores de Óxido Nítrico/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos/farmacologia , Aspirina/análogos & derivados , Aspirina/farmacologia , Aspirina/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção/métodos , Humanos , Macrófagos , Camundongos , Neoplasias/tratamento farmacológico , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/uso terapêutico , Nitrocompostos/farmacologia , Nitrocompostos/uso terapêuticoRESUMO
Cellular defense mechanisms that respond to damage from oxidative and electrophilic stress, such as from quinones, represent a target for chemopreventive agents. Drugs bioactivated to quinones have the potential to activate antioxidant/electrophile responsive element (ARE) transcription of genes for cytoprotective phase 2 enzymes such as NAD(P)H-dependent quinone oxidoreductase (NQO1) but can also cause cellular damage. Two isomeric families of compounds were prepared, including the NO-NSAIDs (NO-donating nonsteroidal anti-inflammatory drugs) NCX 4040 and NCX 4016; one family was postulated to release a quinone methide on esterase bioactivation. The study of reactivity and GSH conjugation in model and cell systems confirmed the postulate. The quinone-forming family, including NCX 4040 and conisogenic bromides and mesylate, was rapidly bioactivated to a quinone, which gave activation of ARE and consequent induction of NQO1 in liver cells. Although the control family, including NCX 4016 and conisogenic bromides and mesylates, cannot form a quinone, ARE activation and NQO1 induction were observed, compatible with slower SN2 reactions with thiol sensor proteins, and consequent ARE-luciferase and NQO1 induction. Using a Chemoprevention Index estimate, the quinone-forming compounds suffered because of high cytoxicity and were more compatible with cancer therapy than chemoprevention. In the Comet assay, NCX 4040 was highly genotoxic relative to NCX 4016. There was no evidence that NO contributes to the observed biological activity and no evidence that NCX 4040 is an NO donor, instead, rapidly releasing NO3- and quinone. These results indicate a strategy for studying the quinone biological activity and reinforce the therapeutic attributes of NO-ASA through structural elements other than NO and ASA.
Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Aspirina/análogos & derivados , Benzoquinonas/metabolismo , Fígado , Nitrocompostos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/efeitos adversos , Aspirina/metabolismo , Aspirina/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimioprevenção , Citoproteção , Esterases/metabolismo , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Luciferases/genética , Desintoxicação Metabólica Fase II , Camundongos , Modelos Biológicos , NAD(P)H Desidrogenase (Quinona) , NADPH Desidrogenase/biossíntese , NADPH Desidrogenase/genética , Nitrocompostos/efeitos adversos , Nitrocompostos/farmacologia , Elementos de Resposta/genética , SuínosRESUMO
The benzothiophene selective estrogen receptor modulators (SERM) raloxifene and arzoxifene are in clinical use and clinical trials for chemoprevention of breast cancer and other indications. These SERMs are "oxidatively labile" and therefore have potential to activate antioxidant responsive element (ARE) transcription of genes for cytoprotective phase II enzymes such as NAD(P)H-dependent quinone oxidoreductase 1 (NQO1). To study this possible mechanism of cancer chemoprevention, a family of benzothiophene SERMs was developed with modulated redox activity, including arzoxifene and its metabolite desmethylarzoxifene (DMA). The relative antioxidant activity of these SERMs was assayed and correlated with induction of NQO1 in murine and human liver cells. DMA was found to induce NQO1 and to activate ARE more strongly than other SERMs, including raloxifene and 4-hydroxytamoxifen. Livers from female, juvenile rats treated for 3 days with estradiol and/or with the benzothiophene SERMs arzoxifene, DMA, and F-DMA showed substantial induction of NQO1 by the benzothiophene SERMs. No persuasive evidence in this assay or in MCF-7 breast cancer cells was obtained of a major role for the estrogen receptor in induction of NQO1 by the benzothiophene SERMs. These results suggest that arzoxifene might provide chemopreventive benefits over raloxifene and other SERMs via metabolism to DMA and stimulation of ARE-mediated induction of phase II enzymes. The correlation of SERM structure with antioxidant activity and NQO1 induction also suggests that oxidative bioactivation of SERMs may be modulated to enhance chemopreventive activity.